matrix power: MatrixBase::pow(RealScalar) and MatrixBase::pow(T) where T is integral type

This commit is contained in:
jdh8 2012-08-15 00:34:20 +08:00
parent c5800a2452
commit 4be172d84f
4 changed files with 957 additions and 1 deletions

View File

@ -454,6 +454,8 @@ template<typename Derived> class MatrixBase
const MatrixFunctionReturnValue<Derived> sin() const; const MatrixFunctionReturnValue<Derived> sin() const;
const MatrixSquareRootReturnValue<Derived> sqrt() const; const MatrixSquareRootReturnValue<Derived> sqrt() const;
const MatrixLogarithmReturnValue<Derived> log() const; const MatrixLogarithmReturnValue<Derived> log() const;
template <typename ExponentType>
const MatrixPowerReturnValue<Derived, ExponentType> pow(const ExponentType& p) const;
#ifdef EIGEN2_SUPPORT #ifdef EIGEN2_SUPPORT
template<typename ProductDerived, typename Lhs, typename Rhs> template<typename ProductDerived, typename Lhs, typename Rhs>

View File

@ -271,6 +271,7 @@ template<typename Derived> struct MatrixExponentialReturnValue;
template<typename Derived> class MatrixFunctionReturnValue; template<typename Derived> class MatrixFunctionReturnValue;
template<typename Derived> class MatrixSquareRootReturnValue; template<typename Derived> class MatrixSquareRootReturnValue;
template<typename Derived> class MatrixLogarithmReturnValue; template<typename Derived> class MatrixLogarithmReturnValue;
template<typename Derived, typename ExponentType> class MatrixPowerReturnValue;
namespace internal { namespace internal {
template <typename Scalar> template <typename Scalar>

View File

@ -57,7 +57,7 @@
#include "src/MatrixFunctions/MatrixFunction.h" #include "src/MatrixFunctions/MatrixFunction.h"
#include "src/MatrixFunctions/MatrixSquareRoot.h" #include "src/MatrixFunctions/MatrixSquareRoot.h"
#include "src/MatrixFunctions/MatrixLogarithm.h" #include "src/MatrixFunctions/MatrixLogarithm.h"
#include "src/MatrixFunctions/MatrixPower.h"
/** /**

View File

@ -0,0 +1,953 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_POWER
#define EIGEN_MATRIX_POWER
#ifndef M_PI
#define M_PI 3.141592653589793238462643383279503L
#endif
namespace Eigen {
/**
* \ingroup MatrixFunctions_Module
*
* \brief Class for computing matrix powers.
*
* \tparam MatrixType type of the base, expected to be an instantiation
* of the Matrix class template.
* \tparam RealScalar type of the exponent, a real scalar.
* \tparam PlainObject type of the multiplier.
* \tparam IsInteger used internally to select correct specialization.
*/
template <typename MatrixType, typename RealScalar, typename PlainObject = MatrixType,
int IsInteger = NumTraits<RealScalar>::IsInteger>
class MatrixPower
{
public:
/**
* \brief Constructor.
*
* \param[in] A the base of the matrix power.
* \param[in] p the exponent of the matrix power.
* \param[in] b the multiplier.
*/
MatrixPower(const MatrixType& A, const RealScalar& p, const PlainObject& b) :
m_A(A),
m_p(p),
m_b(b),
m_dimA(A.cols()),
m_dimb(b.cols())
{ /* empty body */ }
/**
* \brief Compute the matrix power.
*
* \param[out] result \f$ A^p b \f$, as specified in the constructor.
*/
template <typename ResultType> void compute(ResultType& result);
private:
typedef internal::traits<MatrixType> Traits;
static const int Rows = Traits::RowsAtCompileTime;
static const int Cols = Traits::ColsAtCompileTime;
static const int Options = Traits::Options;
static const int MaxRows = Traits::MaxRowsAtCompileTime;
static const int MaxCols = Traits::MaxColsAtCompileTime;
typedef typename MatrixType::Scalar Scalar;
typedef std::complex<RealScalar> ComplexScalar;
typedef typename MatrixType::Index Index;
typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix;
typedef Array<ComplexScalar, Rows, 1, ColMajor, MaxRows> ComplexArray;
/**
* \brief Compute the matrix power.
*
* If \c b is \em fatter than \c A, it computes \f$ A^{p_{\textrm int}}
* \f$ first, and then multiplies it with \c b. Otherwise,
* #computeChainProduct optimizes the expression.
*
* \sa computeChainProduct(ResultType&);
*/
template <typename ResultType>
void computeIntPower(ResultType& result);
/**
* \brief Convert integral power of the matrix into chain product.
*
* This optimizes the matrix expression. It automatically chooses binary
* powering or matrix chain multiplication or solving the linear system
* repetitively, according to which algorithm costs less.
*/
template <typename ResultType>
void computeChainProduct(ResultType&);
/** \brief Compute the cost of binary powering. */
int computeCost(RealScalar);
/** \brief Solve the linear system repetitively. */
template <typename ResultType>
void partialPivLuSolve(RealScalar, ResultType&);
/** \brief Compute Schur decomposition of #m_A. */
void computeSchurDecomposition();
/**
* \brief Split #m_p into integral part and fractional part.
*
* This method stores the integral part \f$ p_{\textrm int} \f$ into
* #m_pint and the fractional part \f$ p_{\textrm frac} \f$ into
* #m_pfrac, where #m_pfrac is in the interval \f$ (-1,1) \f$. To
* choose between the possibilities below, it considers the computation
* of \f$ A^{p_1} \f$ and \f$ A^{p_2} \f$ and determines which of these
* computations is the better conditioned.
*/
void getFractionalExponent();
/** \brief Compute atanh (inverse hyperbolic tangent). */
ComplexScalar atanh(const ComplexScalar& x);
/** \brief Compute power of 2x2 triangular matrix. */
void compute2x2(const RealScalar& p);
/**
* \brief Compute power of triangular matrices with size > 2.
* \details This uses a Schur-Pad&eacute; algorithm.
*/
void computeBig();
/** \brief Get suitable degree for Pade approximation. (specialized for \c RealScalar = \c double) */
inline int getPadeDegree(double);
/* TODO
* inline int getPadeDegree(float);
*
* inline int getPadeDegree(long double);
*/
/** \brief Compute Pad&eacute; approximation to matrix fractional power. */
void computePade(int degree, const ComplexMatrix& IminusT);
/** \brief Get a certain coefficient of the Pad&eacute; approximation. */
inline RealScalar coeff(int degree);
/**
* \brief Store the fractional power into #m_tmp.
*
* This intended for complex matrices.
*/
void computeTmp(ComplexScalar);
/**
* \brief Store the fractional power into #m_tmp.
*
* This is intended for real matrices. It takes the real part of
* \f$ U T^{p_{\textrm frac}} U^H \f$.
*
* \sa computeTmp(ComplexScalar);
*/
void computeTmp(RealScalar);
const MatrixType& m_A; ///< \brief Reference to the matrix base.
const RealScalar& m_p; ///< \brief Reference to the real exponent.
const PlainObject& m_b; ///< \brief Reference to the multiplier.
const Index m_dimA; ///< \brief The dimension of #m_A, equivalent to %m_A.cols().
const Index m_dimb; ///< \brief The dimension of #m_b, equivalent to %m_b.cols().
MatrixType m_tmp; ///< \brief Used for temporary storage.
RealScalar m_pint; ///< \brief Integer part of #m_p.
RealScalar m_pfrac; ///< \brief Fractional part of #m_p.
ComplexMatrix m_T; ///< \brief Triangular part of Schur decomposition.
ComplexMatrix m_U; ///< \brief Unitary part of Schur decomposition.
ComplexMatrix m_fT; ///< \brief #m_T to the power of #m_pfrac.
ComplexArray m_logTdiag; ///< \brief Logarithm of the main diagonal of #m_T.
};
/**
* \internal \ingroup MatrixFunctions_Module
* \brief Partial specialization for integral exponents.
*/
template <typename MatrixType, typename IntExponent, typename PlainObject>
class MatrixPower<MatrixType, IntExponent, PlainObject, 1>
{
public:
/**
* \brief Constructor.
*
* \param[in] A the base of the matrix power.
* \param[in] p the exponent of the matrix power.
* \param[in] b the multiplier.
*/
MatrixPower(const MatrixType& A, const IntExponent& p, const PlainObject& b) :
m_A(A),
m_p(p),
m_b(b),
m_dimA(A.cols()),
m_dimb(b.cols())
{ /* empty body */ }
/**
* \brief Compute the matrix power.
*
* If \c b is \em fatter than \c A, it computes \f$ A^p \f$ first, and
* then multiplies it with \c b. Otherwise, #computeChainProduct
* optimizes the expression.
*
* \param[out] result \f$ A^p b \f$, as specified in the constructor.
*
* \sa computeChainProduct(ResultType&);
*/
template <typename ResultType> void compute(ResultType& result);
private:
typedef typename MatrixType::Index Index;
const MatrixType& m_A; ///< \brief Reference to the matrix base.
const IntExponent& m_p; ///< \brief Reference to the real exponent.
const PlainObject& m_b; ///< \brief Reference to the multiplier.
const Index m_dimA; ///< \brief The dimension of #m_A, equivalent to %m_A.cols().
const Index m_dimb; ///< \brief The dimension of #m_b, equivalent to %m_b.cols().
MatrixType m_tmp; ///< \brief Used for temporary storage.
/**
* \brief Convert matrix power into chain product.
*
* This optimizes the matrix expression. It automatically chooses binary
* powering or matrix chain multiplication or solving the linear system
* repetitively, according to which algorithm costs less.
*/
template <typename ResultType> void computeChainProduct(ResultType& result);
/** \brief Compute the cost of binary powering. */
int computeCost(const IntExponent& p);
/** \brief Solve the linear system repetitively. */
template <typename ResultType>
void partialPivLuSolve(IntExponent p, ResultType& result);
};
/**
* \internal \ingroup MatrixFunctions_Module
* \brief Partial specialization for complex matrices raised to complex exponents.
*/
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
class MatrixPower<MatrixType, std::complex<RealScalar>, PlainObject, IsInteger>
{
private:
typedef internal::traits<MatrixType> Traits;
static const int Rows = Traits::RowsAtCompileTime;
static const int Cols = Traits::ColsAtCompileTime;
static const int Options = Traits::Options;
static const int MaxRows = Traits::MaxRowsAtCompileTime;
static const int MaxCols = Traits::MaxColsAtCompileTime;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef Array<Scalar, Rows, 1, ColMajor, MaxRows> ArrayType;
public:
/**
* \brief Constructor.
*
* \param[in] A the base of the matrix power.
* \param[in] p the exponent of the matrix power.
* \param[in] b the multiplier.
*/
MatrixPower(const MatrixType& A, const Scalar& p, const PlainObject& b) :
m_A(A),
m_p(p),
m_b(b),
m_dimA(A.cols()),
m_dimb(b.cols())
{ EIGEN_STATIC_ASSERT(false, COMPLEX_POWER_OF_A_MATRIX_IS_UNDER_CONSTRUCTION) }
/**
* \brief Compute the matrix power.
*
* \param[out] result \f$ A^p b \f$, as specified in the constructor.
*/
template <typename ResultType> void compute(ResultType& result);
private:
/** \brief Compute Schur decomposition of #m_A. */
void computeSchurDecomposition();
/** \brief Compute atanh (inverse hyperbolic tangent). */
Scalar atanh(const Scalar& x);
/** \brief Compute power of 2x2 triangular matrix. */
void compute2x2(const Scalar& p);
/**
* \brief Compute power of triangular matrices with size > 2.
* \details This uses a Schur-Pad&eacute; algorithm.
*/
void computeBig();
/** \brief Get suitable degree for Pade approximation. (specialized for \c RealScalar = \c double) */
inline int getPadeDegree(double);
/* TODO
* inline int getPadeDegree(float);
*
* inline int getPadeDegree(long double);
*/
/** \brief Compute Pad&eacute; approximation to matrix fractional power. */
void computePade(int degree, const MatrixType& IminusT);
/** \brief Get a certain coefficient of the Pad&eacute; approximation. */
inline Scalar coeff(int degree);
const MatrixType& m_A; ///< \brief Reference to the matrix base.
const Scalar& m_p; ///< \brief Reference to the real exponent.
const PlainObject& m_b; ///< \brief Reference to the multiplier.
const Index m_dimA; ///< \brief The dimension of #m_A, equivalent to %m_A.cols().
const Index m_dimb; ///< \brief The dimension of #m_b, equivalent to %m_b.cols().
MatrixType m_tmp; ///< \brief Used for temporary storage.
MatrixType m_T; ///< \brief Triangular part of Schur decomposition.
MatrixType m_U; ///< \brief Unitary part of Schur decomposition.
MatrixType m_fT; ///< \brief #m_T to the power of #m_pfrac.
ArrayType m_logTdiag; ///< \brief Logarithm of the main diagonal of #m_T.
};
/******* Specialized for real exponents *******/
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
template <typename ResultType>
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::compute(ResultType& result)
{
using std::floor;
using std::pow;
m_pint = floor(m_p);
m_pfrac = m_p - m_pint;
if (m_pfrac == RealScalar(0))
computeIntPower(result);
else if (m_dimA == 1)
result = pow(m_A(0,0), m_p) * m_b;
else {
computeSchurDecomposition();
getFractionalExponent();
computeIntPower(result);
if (m_dimA == 2)
compute2x2(m_pfrac);
else
computeBig();
computeTmp(Scalar());
result *= m_tmp;
}
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
template <typename ResultType>
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::computeIntPower(ResultType& result)
{
if (m_dimb > m_dimA) {
MatrixType tmp = MatrixType::Identity(m_A.rows(), m_A.cols());
computeChainProduct(tmp);
result = tmp * m_b;
} else {
result = m_b;
computeChainProduct(result);
}
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
template <typename ResultType>
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::computeChainProduct(ResultType& result)
{
using std::frexp;
using std::ldexp;
const bool pIsNegative = m_pint < RealScalar(0);
RealScalar p = pIsNegative? -m_pint: m_pint;
int cost = computeCost(p);
if (pIsNegative) {
if (p * m_dimb <= cost * m_dimA) {
partialPivLuSolve(p, result);
return;
} else {
m_tmp = m_A.inverse();
}
} else {
m_tmp = m_A;
}
while (p * m_dimb > cost * m_dimA) {
if (fmod(p, RealScalar(2)) >= RealScalar(1)) {
result = m_tmp * result;
cost--;
}
m_tmp *= m_tmp;
cost--;
p = ldexp(p, -1);
}
for (; p >= RealScalar(1); p--)
result = m_tmp * result;
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
int MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::computeCost(RealScalar p)
{
using std::frexp;
using std::ldexp;
int cost, tmp;
frexp(p, &cost);
while (frexp(p, &tmp), tmp > 0) {
p -= ldexp(RealScalar(0.5), tmp);
cost++;
}
return cost;
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
template <typename ResultType>
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::partialPivLuSolve(RealScalar p, ResultType& result)
{
const PartialPivLU<MatrixType> Asolver(m_A);
for (; p >= RealScalar(1); p--)
result = Asolver.solve(result);
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::computeSchurDecomposition()
{
const ComplexSchur<MatrixType> schurOfA(m_A);
m_T = schurOfA.matrixT();
m_U = schurOfA.matrixU();
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::getFractionalExponent()
{
using std::pow;
typedef Array<RealScalar, Rows, 1, ColMajor, MaxRows> RealArray;
const ComplexArray Tdiag = m_T.diagonal();
RealScalar maxAbsEival, minAbsEival, *begin, *end;
RealArray absTdiag;
m_logTdiag = Tdiag.log();
absTdiag = Tdiag.abs();
maxAbsEival = minAbsEival = absTdiag[0];
begin = absTdiag.data();
end = begin + m_dimA;
// This avoids traversing the array twice.
for (RealScalar *ptr = begin + 1; ptr < end; ptr++) {
if (*ptr > maxAbsEival)
maxAbsEival = *ptr;
else if (*ptr < minAbsEival)
minAbsEival = *ptr;
}
if (m_pfrac > RealScalar(0.5) && // This is just a shortcut.
m_pfrac > (RealScalar(1) - m_pfrac) * pow(maxAbsEival/minAbsEival, m_pfrac)) {
m_pfrac--;
m_pint++;
}
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
std::complex<RealScalar> MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::atanh(const ComplexScalar& x)
{
using std::abs;
using std::log;
using std::sqrt;
if (abs(x) > sqrt(NumTraits<RealScalar>::epsilon()))
return RealScalar(0.5) * log((RealScalar(1) + x) / (RealScalar(1) - x));
else
return x + x*x*x / RealScalar(3);
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::compute2x2(const RealScalar& p)
{
using std::abs;
using std::ceil;
using std::exp;
using std::imag;
using std::ldexp;
using std::log;
using std::pow;
using std::sinh;
int i, j, unwindingNumber;
ComplexScalar w;
m_fT(0,0) = pow(m_T(0,0), p);
for (j = 1; j < m_dimA; j++) {
i = j - 1;
m_fT(j,j) = pow(m_T(j,j), p);
if (m_T(i,i) == m_T(j,j))
m_fT(i,j) = p * pow(m_T(i,j), p - RealScalar(1));
else if (abs(m_T(i,i)) < ldexp(abs(m_T(j,j)), -1) || abs(m_T(j,j)) < ldexp(abs(m_T(i,i)), -1))
m_fT(i,j) = m_T(i,j) * (m_fT(j,j) - m_fT(i,i)) / (m_T(j,j) - m_T(i,i));
else {
// computation in previous branch is inaccurate if abs(m_T(j,j)) \approx abs(m_T(i,i))
unwindingNumber = static_cast<int>(ceil((imag(m_logTdiag[j] - m_logTdiag[i]) - M_PI) / (2 * M_PI)));
w = atanh((m_T(j,j) - m_T(i,i)) / (m_T(j,j) + m_T(i,i))) + ComplexScalar(0, M_PI * unwindingNumber);
m_fT(i,j) = m_T(i,j) * RealScalar(2) * exp(RealScalar(0.5) * p * (m_logTdiag[j] + m_logTdiag[i])) *
sinh(p * w) / (m_T(j,j) - m_T(i,i));
}
}
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::computeBig()
{
using std::ldexp;
const RealScalar maxNormForPade = 2.787629930862099e-1;
int degree, degree2, numberOfSquareRoots = 0, numberOfExtraSquareRoots = 0;
ComplexMatrix IminusT, sqrtT, T = m_T;
RealScalar normIminusT;
while (true) {
IminusT = ComplexMatrix::Identity(m_A.rows(), m_A.cols()) - T;
normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
if (normIminusT < maxNormForPade) {
degree = getPadeDegree(normIminusT);
degree2 = getPadeDegree(normIminusT * RealScalar(0.5));
if (degree - degree2 <= 1 || numberOfExtraSquareRoots)
break;
numberOfExtraSquareRoots++;
}
MatrixSquareRootTriangular<ComplexMatrix>(T).compute(sqrtT);
T = sqrtT;
numberOfSquareRoots++;
}
computePade(degree, IminusT);
for (; numberOfSquareRoots; numberOfSquareRoots--) {
compute2x2(ldexp(m_pfrac, -numberOfSquareRoots));
m_fT *= m_fT;
}
compute2x2(m_pfrac);
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
inline int MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::getPadeDegree(double normIminusT)
{
const double maxNormForPade[] = { 1.882832775783885e-2 /* degree = 3 */ , 6.036100693089764e-2,
1.239372725584911e-1, 1.998030690604271e-1, 2.787629930862099e-1 };
for (int degree = 3; degree <= 7; degree++)
if (normIminusT <= maxNormForPade[degree - 3])
return degree;
assert(false); // this line should never be reached
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::computePade(int degree, const ComplexMatrix& IminusT)
{
degree <<= 1;
m_fT = coeff(degree) * IminusT;
for (int i = degree - 1; i; i--) {
m_fT = (ComplexMatrix::Identity(m_A.rows(), m_A.cols()) + m_fT).template triangularView<Upper>()
.solve(coeff(i) * IminusT).eval();
}
m_fT += ComplexMatrix::Identity(m_A.rows(), m_A.cols());
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
inline RealScalar MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::coeff(int i)
{
if (i == 1)
return -m_pfrac;
else if (i & 1)
return (-m_pfrac - RealScalar(i)) / RealScalar((i<<2) + 2);
else
return (m_pfrac - RealScalar(i)) / RealScalar((i<<2) - 2);
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::computeTmp(RealScalar)
{ m_tmp = (m_U * m_fT * m_U.adjoint()).real(); }
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::computeTmp(ComplexScalar)
{ m_tmp = (m_U * m_fT * m_U.adjoint()).eval(); }
/******* Specialized for integral exponents *******/
template <typename MatrixType, typename IntExponent, typename PlainObject>
template <typename ResultType>
void MatrixPower<MatrixType,IntExponent,PlainObject,1>::compute(ResultType& result)
{
if (m_dimb > m_dimA) {
MatrixType tmp = MatrixType::Identity(m_dimA, m_dimA);
computeChainProduct(tmp);
result = tmp * m_b;
} else {
result = m_b;
computeChainProduct(result);
}
}
template <typename MatrixType, typename IntExponent, typename PlainObject>
int MatrixPower<MatrixType,IntExponent,PlainObject,1>::computeCost(const IntExponent& p)
{
int cost = 0;
IntExponent tmp = p;
for (tmp = p >> 1; tmp; tmp >>= 1)
cost++;
for (tmp = IntExponent(1); tmp <= p; tmp <<= 1)
if (tmp & p) cost++;
return cost;
}
template <typename MatrixType, typename IntExponent, typename PlainObject>
template <typename ResultType>
void MatrixPower<MatrixType,IntExponent,PlainObject,1>::partialPivLuSolve(IntExponent p, ResultType& result)
{
const PartialPivLU<MatrixType> Asolver(m_A);
for(; p; p--)
result = Asolver.solve(result);
}
template <typename MatrixType, typename IntExponent, typename PlainObject>
template <typename ResultType>
void MatrixPower<MatrixType,IntExponent,PlainObject,1>::computeChainProduct(ResultType& result)
{
const bool pIsNegative = m_p < IntExponent(0);
IntExponent p = pIsNegative? -m_p: m_p;
int cost = computeCost(p);
if (pIsNegative) {
if (p * m_dimb <= cost * m_dimA) {
partialPivLuSolve(p, result);
return;
} else { m_tmp = m_A.inverse(); }
} else { m_tmp = m_A; }
while (p * m_dimb > cost * m_dimA) {
if (p & 1) {
result = m_tmp * result;
cost--;
}
m_tmp *= m_tmp;
cost--;
p >>= 1;
}
for (; p; p--)
result = m_tmp * result;
}
/******* Specialized for complex exponents *******/
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
template <typename ResultType>
void MatrixPower<MatrixType,std::complex<RealScalar>,PlainObject,IsInteger>::compute(ResultType& result)
{
using std::floor;
using std::pow;
if (m_dimA == 1)
result = pow(m_A(0,0), m_p) * m_b;
else {
computeSchurDecomposition();
if (m_dimA == 2)
compute2x2(m_p);
else
computeBig();
result = m_U * m_fT * m_U.adjoint();
}
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
void MatrixPower<MatrixType,std::complex<RealScalar>,PlainObject,IsInteger>::computeSchurDecomposition()
{
const ComplexSchur<MatrixType> schurOfA(m_A);
m_T = schurOfA.matrixT();
m_U = schurOfA.matrixU();
m_logTdiag = m_T.diagonal().array().log();
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
typename MatrixType::Scalar MatrixPower<MatrixType,std::complex<RealScalar>,PlainObject,IsInteger>::atanh(const Scalar& x)
{
using std::abs;
using std::log;
using std::sqrt;
if (abs(x) > sqrt(NumTraits<RealScalar>::epsilon()))
return RealScalar(0.5) * log((RealScalar(1) + x) / (RealScalar(1) - x));
else
return x + x*x*x / RealScalar(3);
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
void MatrixPower<MatrixType,std::complex<RealScalar>,PlainObject,IsInteger>::compute2x2(const Scalar& p)
{
using std::abs;
using std::ceil;
using std::exp;
using std::imag;
using std::ldexp;
using std::log;
using std::pow;
using std::sinh;
int i, j, unwindingNumber;
Scalar w;
m_fT(0,0) = pow(m_T(0,0), p);
for (j = 1; j < m_dimA; j++) {
i = j - 1;
m_fT(j,j) = pow(m_T(j,j), p);
if (m_T(i,i) == m_T(j,j))
m_fT(i,j) = p * pow(m_T(i,j), p - RealScalar(1));
else if (abs(m_T(i,i)) < ldexp(abs(m_T(j,j)), -1) || abs(m_T(j,j)) < ldexp(abs(m_T(i,i)), -1))
m_fT(i,j) = m_T(i,j) * (m_fT(j,j) - m_fT(i,i)) / (m_T(j,j) - m_T(i,i));
else {
// computation in previous branch is inaccurate if abs(m_T(j,j)) \approx abs(m_T(i,i))
unwindingNumber = static_cast<int>(ceil((imag(m_logTdiag[j] - m_logTdiag[i]) - M_PI) / (2 * M_PI)));
w = atanh((m_T(j,j) - m_T(i,i)) / (m_T(j,j) + m_T(i,i))) + Scalar(0, M_PI * unwindingNumber);
m_fT(i,j) = m_T(i,j) * RealScalar(2) * exp(RealScalar(0.5) * p * (m_logTdiag[j] + m_logTdiag[i])) *
sinh(p * w) / (m_T(j,j) - m_T(i,i));
}
}
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
void MatrixPower<MatrixType,std::complex<RealScalar>,PlainObject,IsInteger>::computeBig()
{
using std::abs;
using std::ceil;
using std::frexp;
using std::ldexp;
const RealScalar maxNormForPade = 2.787629930862099e-1;
int degree, degree2, numberOfSquareRoots, numberOfExtraSquareRoots = 0;
MatrixType IminusT, sqrtT, T = m_T;
RealScalar normIminusT;
Scalar p;
/*
frexp(abs(m_p), &numberOfSquareRoots);
if (numberOfSquareRoots > 0)
p = m_p * ldexp(RealScalar(1), -numberOfSquareRoots);
else {
p = m_p;
numberOfSquareRoots = 0;
}
*/
while (true) {
IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
if (normIminusT < maxNormForPade) {
degree = getPadeDegree(normIminusT);
degree2 = getPadeDegree(normIminusT * RealScalar(0.5));
if (degree - degree2 <= 1 || numberOfExtraSquareRoots)
break;
numberOfExtraSquareRoots++;
}
MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
T = sqrtT;
numberOfSquareRoots++;
}
computePade(degree, IminusT);
for (; numberOfSquareRoots; numberOfSquareRoots--) {
compute2x2(p * ldexp(RealScalar(1), -numberOfSquareRoots));
m_fT *= m_fT;
}
compute2x2(p);
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
inline int MatrixPower<MatrixType,std::complex<RealScalar>,PlainObject,IsInteger>::getPadeDegree(double normIminusT)
{
const double maxNormForPade[] = { 1.882832775783885e-2 /* degree = 3 */ , 6.036100693089764e-2,
1.239372725584911e-1, 1.998030690604271e-1, 2.787629930862099e-1 };
for (int degree = 3; degree <= 7; degree++)
if (normIminusT <= maxNormForPade[degree - 3])
return degree;
assert(false); // this line should never be reached
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
void MatrixPower<MatrixType,std::complex<RealScalar>,PlainObject,IsInteger>::computePade(int degree, const MatrixType& IminusT)
{
degree <<= 1;
m_fT = coeff(degree) * IminusT;
for (int i = degree - 1; i; i--) {
m_fT = (MatrixType::Identity(m_A.rows(), m_A.cols()) + m_fT).template triangularView<Upper>()
.solve(coeff(i) * IminusT).eval();
}
m_fT += MatrixType::Identity(m_A.rows(), m_A.cols());
}
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
inline typename MatrixType::Scalar MatrixPower<MatrixType,std::complex<RealScalar>,PlainObject,IsInteger>::coeff(int i)
{
if (i == 1)
return -m_p;
else if (i & 1)
return (-m_p - RealScalar(i)) / RealScalar((i<<2) + 2);
else
return (m_p - RealScalar(i)) / RealScalar((i<<2) - 2);
}
/**
* \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix power multiplied by another matrix
* (expression).
*
* \tparam MatrixType type of the base, a matrix (expression).
* \tparam ExponentType type of the exponent, a scalar.
* \tparam Derived type of the multiplier, a matrix (expression).
*
* This class holds the arguments to the matrix expression until it is
* assigned or evaluated for some other reason (so the argument
* should not be changed in the meantime). It is the return type of
* MatrixPowerReturnValue::operator*() and most of the time this is the
* only way it is used.
*/
template<typename MatrixType, typename ExponentType, typename Derived> class MatrixPowerMultiplied
: public ReturnByValue<MatrixPowerMultiplied<MatrixType, ExponentType, Derived> >
{
public:
typedef typename Derived::Index Index;
/**
* \brief Constructor.
*
* \param[in] A %Matrix (expression), the base of the matrix power.
* \param[in] p scalar, the exponent of the matrix power.
* \param[in] b %Matrix (expression), the multiplier.
*/
MatrixPowerMultiplied(const MatrixType& A, const ExponentType& p, const Derived& b)
: m_A(A), m_p(p), m_b(b) { }
/**
* \brief Compute the matrix exponential.
*
* \param[out] result \f$ A^p b \f$ where \c A ,\c p and \c b are as in
* the constructor.
*/
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
typedef typename Derived::PlainObject PlainObject;
const typename MatrixType::PlainObject Aevaluated = m_A.eval();
const PlainObject bevaluated = m_b.eval();
MatrixPower<MatrixType, ExponentType, PlainObject> mp(Aevaluated, m_p, bevaluated);
mp.compute(result);
}
Index rows() const { return m_b.rows(); }
Index cols() const { return m_b.cols(); }
private:
const MatrixType& m_A;
const ExponentType& m_p;
const Derived& m_b;
MatrixPowerMultiplied& operator=(const MatrixPowerMultiplied&);
};
/**
* \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix power of some matrix (expression).
*
* \tparam Derived type of the base, a matrix (expression).
* \tparam ExponentType type of the exponent, a scalar.
*
* This class holds the arguments to the matrix power until it is
* assigned or evaluated for some other reason (so the argument
* should not be changed in the meantime). It is the return type of
* MatrixBase::pow() and related functions and most of the
* time this is the only way it is used.
*/
template<typename Derived, typename ExponentType> class MatrixPowerReturnValue
: public ReturnByValue<MatrixPowerReturnValue<Derived, ExponentType> >
{
public:
typedef typename Derived::Index Index;
/**
* \brief Constructor.
*
* \param[in] A %Matrix (expression), the base of the matrix power.
* \param[in] p scalar, the exponent of the matrix power.
*/
MatrixPowerReturnValue(const Derived& A, const ExponentType& p)
: m_A(A), m_p(p) { }
/**
* \brief Return the matrix power multiplied by %Matrix \c b.
*
* The %MatrixPower class can optimize \f$ A^p b \f$ computing, and this
* method provides an elegant way to call it:
*
* \param[in] b %Matrix (exporession), the multiplier.
*/
template <typename OtherDerived>
const MatrixPowerMultiplied<Derived, ExponentType, OtherDerived> operator*(const MatrixBase<OtherDerived>& b) const
{ return MatrixPowerMultiplied<Derived, ExponentType, OtherDerived>(m_A, m_p, b.derived()); }
/**
* \brief Compute the matrix power.
*
* \param[out] result \f$ A^p \f$ where \c A and \c p are as in the
* constructor.
*/
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
typedef typename Derived::PlainObject PlainObject;
const PlainObject Aevaluated = m_A.eval();
const PlainObject Identity = PlainObject::Identity(m_A.rows(), m_A.cols());
MatrixPower<PlainObject, ExponentType> mp(Aevaluated, m_p, Identity);
mp.compute(result);
}
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
private:
const Derived& m_A;
const ExponentType& m_p;
MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
};
namespace internal {
template<typename MatrixType, typename ExponentType, typename Derived>
struct traits<MatrixPowerMultiplied<MatrixType, ExponentType, Derived> >
{
typedef typename Derived::PlainObject ReturnType;
};
template<typename Derived, typename ExponentType>
struct traits<MatrixPowerReturnValue<Derived, ExponentType> >
{
typedef typename Derived::PlainObject ReturnType;
};
}
template <typename Derived>
template <typename ExponentType>
const MatrixPowerReturnValue<Derived, ExponentType> MatrixBase<Derived>::pow(const ExponentType& p) const
{
eigen_assert(rows() == cols());
return MatrixPowerReturnValue<Derived, ExponentType>(derived(), p);
}
} // end namespace Eigen
#endif // EIGEN_MATRIX_POWER