mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 01:29:35 +08:00
matrix power: MatrixBase::pow(RealScalar) and MatrixBase::pow(T) where T is integral type
This commit is contained in:
parent
c5800a2452
commit
4be172d84f
@ -454,6 +454,8 @@ template<typename Derived> class MatrixBase
|
|||||||
const MatrixFunctionReturnValue<Derived> sin() const;
|
const MatrixFunctionReturnValue<Derived> sin() const;
|
||||||
const MatrixSquareRootReturnValue<Derived> sqrt() const;
|
const MatrixSquareRootReturnValue<Derived> sqrt() const;
|
||||||
const MatrixLogarithmReturnValue<Derived> log() const;
|
const MatrixLogarithmReturnValue<Derived> log() const;
|
||||||
|
template <typename ExponentType>
|
||||||
|
const MatrixPowerReturnValue<Derived, ExponentType> pow(const ExponentType& p) const;
|
||||||
|
|
||||||
#ifdef EIGEN2_SUPPORT
|
#ifdef EIGEN2_SUPPORT
|
||||||
template<typename ProductDerived, typename Lhs, typename Rhs>
|
template<typename ProductDerived, typename Lhs, typename Rhs>
|
||||||
|
@ -271,6 +271,7 @@ template<typename Derived> struct MatrixExponentialReturnValue;
|
|||||||
template<typename Derived> class MatrixFunctionReturnValue;
|
template<typename Derived> class MatrixFunctionReturnValue;
|
||||||
template<typename Derived> class MatrixSquareRootReturnValue;
|
template<typename Derived> class MatrixSquareRootReturnValue;
|
||||||
template<typename Derived> class MatrixLogarithmReturnValue;
|
template<typename Derived> class MatrixLogarithmReturnValue;
|
||||||
|
template<typename Derived, typename ExponentType> class MatrixPowerReturnValue;
|
||||||
|
|
||||||
namespace internal {
|
namespace internal {
|
||||||
template <typename Scalar>
|
template <typename Scalar>
|
||||||
|
@ -57,7 +57,7 @@
|
|||||||
#include "src/MatrixFunctions/MatrixFunction.h"
|
#include "src/MatrixFunctions/MatrixFunction.h"
|
||||||
#include "src/MatrixFunctions/MatrixSquareRoot.h"
|
#include "src/MatrixFunctions/MatrixSquareRoot.h"
|
||||||
#include "src/MatrixFunctions/MatrixLogarithm.h"
|
#include "src/MatrixFunctions/MatrixLogarithm.h"
|
||||||
|
#include "src/MatrixFunctions/MatrixPower.h"
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
953
unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
Normal file
953
unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
Normal file
@ -0,0 +1,953 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
|
||||||
|
//
|
||||||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||||||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||||
|
|
||||||
|
#ifndef EIGEN_MATRIX_POWER
|
||||||
|
#define EIGEN_MATRIX_POWER
|
||||||
|
|
||||||
|
#ifndef M_PI
|
||||||
|
#define M_PI 3.141592653589793238462643383279503L
|
||||||
|
#endif
|
||||||
|
|
||||||
|
namespace Eigen {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \ingroup MatrixFunctions_Module
|
||||||
|
*
|
||||||
|
* \brief Class for computing matrix powers.
|
||||||
|
*
|
||||||
|
* \tparam MatrixType type of the base, expected to be an instantiation
|
||||||
|
* of the Matrix class template.
|
||||||
|
* \tparam RealScalar type of the exponent, a real scalar.
|
||||||
|
* \tparam PlainObject type of the multiplier.
|
||||||
|
* \tparam IsInteger used internally to select correct specialization.
|
||||||
|
*/
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject = MatrixType,
|
||||||
|
int IsInteger = NumTraits<RealScalar>::IsInteger>
|
||||||
|
class MatrixPower
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
/**
|
||||||
|
* \brief Constructor.
|
||||||
|
*
|
||||||
|
* \param[in] A the base of the matrix power.
|
||||||
|
* \param[in] p the exponent of the matrix power.
|
||||||
|
* \param[in] b the multiplier.
|
||||||
|
*/
|
||||||
|
MatrixPower(const MatrixType& A, const RealScalar& p, const PlainObject& b) :
|
||||||
|
m_A(A),
|
||||||
|
m_p(p),
|
||||||
|
m_b(b),
|
||||||
|
m_dimA(A.cols()),
|
||||||
|
m_dimb(b.cols())
|
||||||
|
{ /* empty body */ }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Compute the matrix power.
|
||||||
|
*
|
||||||
|
* \param[out] result \f$ A^p b \f$, as specified in the constructor.
|
||||||
|
*/
|
||||||
|
template <typename ResultType> void compute(ResultType& result);
|
||||||
|
|
||||||
|
private:
|
||||||
|
typedef internal::traits<MatrixType> Traits;
|
||||||
|
static const int Rows = Traits::RowsAtCompileTime;
|
||||||
|
static const int Cols = Traits::ColsAtCompileTime;
|
||||||
|
static const int Options = Traits::Options;
|
||||||
|
static const int MaxRows = Traits::MaxRowsAtCompileTime;
|
||||||
|
static const int MaxCols = Traits::MaxColsAtCompileTime;
|
||||||
|
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef std::complex<RealScalar> ComplexScalar;
|
||||||
|
typedef typename MatrixType::Index Index;
|
||||||
|
typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix;
|
||||||
|
typedef Array<ComplexScalar, Rows, 1, ColMajor, MaxRows> ComplexArray;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Compute the matrix power.
|
||||||
|
*
|
||||||
|
* If \c b is \em fatter than \c A, it computes \f$ A^{p_{\textrm int}}
|
||||||
|
* \f$ first, and then multiplies it with \c b. Otherwise,
|
||||||
|
* #computeChainProduct optimizes the expression.
|
||||||
|
*
|
||||||
|
* \sa computeChainProduct(ResultType&);
|
||||||
|
*/
|
||||||
|
template <typename ResultType>
|
||||||
|
void computeIntPower(ResultType& result);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Convert integral power of the matrix into chain product.
|
||||||
|
*
|
||||||
|
* This optimizes the matrix expression. It automatically chooses binary
|
||||||
|
* powering or matrix chain multiplication or solving the linear system
|
||||||
|
* repetitively, according to which algorithm costs less.
|
||||||
|
*/
|
||||||
|
template <typename ResultType>
|
||||||
|
void computeChainProduct(ResultType&);
|
||||||
|
|
||||||
|
/** \brief Compute the cost of binary powering. */
|
||||||
|
int computeCost(RealScalar);
|
||||||
|
|
||||||
|
/** \brief Solve the linear system repetitively. */
|
||||||
|
template <typename ResultType>
|
||||||
|
void partialPivLuSolve(RealScalar, ResultType&);
|
||||||
|
|
||||||
|
/** \brief Compute Schur decomposition of #m_A. */
|
||||||
|
void computeSchurDecomposition();
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Split #m_p into integral part and fractional part.
|
||||||
|
*
|
||||||
|
* This method stores the integral part \f$ p_{\textrm int} \f$ into
|
||||||
|
* #m_pint and the fractional part \f$ p_{\textrm frac} \f$ into
|
||||||
|
* #m_pfrac, where #m_pfrac is in the interval \f$ (-1,1) \f$. To
|
||||||
|
* choose between the possibilities below, it considers the computation
|
||||||
|
* of \f$ A^{p_1} \f$ and \f$ A^{p_2} \f$ and determines which of these
|
||||||
|
* computations is the better conditioned.
|
||||||
|
*/
|
||||||
|
void getFractionalExponent();
|
||||||
|
|
||||||
|
/** \brief Compute atanh (inverse hyperbolic tangent). */
|
||||||
|
ComplexScalar atanh(const ComplexScalar& x);
|
||||||
|
|
||||||
|
/** \brief Compute power of 2x2 triangular matrix. */
|
||||||
|
void compute2x2(const RealScalar& p);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Compute power of triangular matrices with size > 2.
|
||||||
|
* \details This uses a Schur-Padé algorithm.
|
||||||
|
*/
|
||||||
|
void computeBig();
|
||||||
|
|
||||||
|
/** \brief Get suitable degree for Pade approximation. (specialized for \c RealScalar = \c double) */
|
||||||
|
inline int getPadeDegree(double);
|
||||||
|
/* TODO
|
||||||
|
* inline int getPadeDegree(float);
|
||||||
|
*
|
||||||
|
* inline int getPadeDegree(long double);
|
||||||
|
*/
|
||||||
|
/** \brief Compute Padé approximation to matrix fractional power. */
|
||||||
|
void computePade(int degree, const ComplexMatrix& IminusT);
|
||||||
|
|
||||||
|
/** \brief Get a certain coefficient of the Padé approximation. */
|
||||||
|
inline RealScalar coeff(int degree);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Store the fractional power into #m_tmp.
|
||||||
|
*
|
||||||
|
* This intended for complex matrices.
|
||||||
|
*/
|
||||||
|
void computeTmp(ComplexScalar);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Store the fractional power into #m_tmp.
|
||||||
|
*
|
||||||
|
* This is intended for real matrices. It takes the real part of
|
||||||
|
* \f$ U T^{p_{\textrm frac}} U^H \f$.
|
||||||
|
*
|
||||||
|
* \sa computeTmp(ComplexScalar);
|
||||||
|
*/
|
||||||
|
void computeTmp(RealScalar);
|
||||||
|
|
||||||
|
const MatrixType& m_A; ///< \brief Reference to the matrix base.
|
||||||
|
const RealScalar& m_p; ///< \brief Reference to the real exponent.
|
||||||
|
const PlainObject& m_b; ///< \brief Reference to the multiplier.
|
||||||
|
const Index m_dimA; ///< \brief The dimension of #m_A, equivalent to %m_A.cols().
|
||||||
|
const Index m_dimb; ///< \brief The dimension of #m_b, equivalent to %m_b.cols().
|
||||||
|
MatrixType m_tmp; ///< \brief Used for temporary storage.
|
||||||
|
RealScalar m_pint; ///< \brief Integer part of #m_p.
|
||||||
|
RealScalar m_pfrac; ///< \brief Fractional part of #m_p.
|
||||||
|
ComplexMatrix m_T; ///< \brief Triangular part of Schur decomposition.
|
||||||
|
ComplexMatrix m_U; ///< \brief Unitary part of Schur decomposition.
|
||||||
|
ComplexMatrix m_fT; ///< \brief #m_T to the power of #m_pfrac.
|
||||||
|
ComplexArray m_logTdiag; ///< \brief Logarithm of the main diagonal of #m_T.
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \internal \ingroup MatrixFunctions_Module
|
||||||
|
* \brief Partial specialization for integral exponents.
|
||||||
|
*/
|
||||||
|
template <typename MatrixType, typename IntExponent, typename PlainObject>
|
||||||
|
class MatrixPower<MatrixType, IntExponent, PlainObject, 1>
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
/**
|
||||||
|
* \brief Constructor.
|
||||||
|
*
|
||||||
|
* \param[in] A the base of the matrix power.
|
||||||
|
* \param[in] p the exponent of the matrix power.
|
||||||
|
* \param[in] b the multiplier.
|
||||||
|
*/
|
||||||
|
MatrixPower(const MatrixType& A, const IntExponent& p, const PlainObject& b) :
|
||||||
|
m_A(A),
|
||||||
|
m_p(p),
|
||||||
|
m_b(b),
|
||||||
|
m_dimA(A.cols()),
|
||||||
|
m_dimb(b.cols())
|
||||||
|
{ /* empty body */ }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Compute the matrix power.
|
||||||
|
*
|
||||||
|
* If \c b is \em fatter than \c A, it computes \f$ A^p \f$ first, and
|
||||||
|
* then multiplies it with \c b. Otherwise, #computeChainProduct
|
||||||
|
* optimizes the expression.
|
||||||
|
*
|
||||||
|
* \param[out] result \f$ A^p b \f$, as specified in the constructor.
|
||||||
|
*
|
||||||
|
* \sa computeChainProduct(ResultType&);
|
||||||
|
*/
|
||||||
|
template <typename ResultType> void compute(ResultType& result);
|
||||||
|
|
||||||
|
private:
|
||||||
|
typedef typename MatrixType::Index Index;
|
||||||
|
|
||||||
|
const MatrixType& m_A; ///< \brief Reference to the matrix base.
|
||||||
|
const IntExponent& m_p; ///< \brief Reference to the real exponent.
|
||||||
|
const PlainObject& m_b; ///< \brief Reference to the multiplier.
|
||||||
|
const Index m_dimA; ///< \brief The dimension of #m_A, equivalent to %m_A.cols().
|
||||||
|
const Index m_dimb; ///< \brief The dimension of #m_b, equivalent to %m_b.cols().
|
||||||
|
MatrixType m_tmp; ///< \brief Used for temporary storage.
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Convert matrix power into chain product.
|
||||||
|
*
|
||||||
|
* This optimizes the matrix expression. It automatically chooses binary
|
||||||
|
* powering or matrix chain multiplication or solving the linear system
|
||||||
|
* repetitively, according to which algorithm costs less.
|
||||||
|
*/
|
||||||
|
template <typename ResultType> void computeChainProduct(ResultType& result);
|
||||||
|
|
||||||
|
/** \brief Compute the cost of binary powering. */
|
||||||
|
int computeCost(const IntExponent& p);
|
||||||
|
|
||||||
|
/** \brief Solve the linear system repetitively. */
|
||||||
|
template <typename ResultType>
|
||||||
|
void partialPivLuSolve(IntExponent p, ResultType& result);
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \internal \ingroup MatrixFunctions_Module
|
||||||
|
* \brief Partial specialization for complex matrices raised to complex exponents.
|
||||||
|
*/
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
class MatrixPower<MatrixType, std::complex<RealScalar>, PlainObject, IsInteger>
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
typedef internal::traits<MatrixType> Traits;
|
||||||
|
static const int Rows = Traits::RowsAtCompileTime;
|
||||||
|
static const int Cols = Traits::ColsAtCompileTime;
|
||||||
|
static const int Options = Traits::Options;
|
||||||
|
static const int MaxRows = Traits::MaxRowsAtCompileTime;
|
||||||
|
static const int MaxCols = Traits::MaxColsAtCompileTime;
|
||||||
|
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef typename MatrixType::Index Index;
|
||||||
|
typedef Array<Scalar, Rows, 1, ColMajor, MaxRows> ArrayType;
|
||||||
|
|
||||||
|
public:
|
||||||
|
/**
|
||||||
|
* \brief Constructor.
|
||||||
|
*
|
||||||
|
* \param[in] A the base of the matrix power.
|
||||||
|
* \param[in] p the exponent of the matrix power.
|
||||||
|
* \param[in] b the multiplier.
|
||||||
|
*/
|
||||||
|
MatrixPower(const MatrixType& A, const Scalar& p, const PlainObject& b) :
|
||||||
|
m_A(A),
|
||||||
|
m_p(p),
|
||||||
|
m_b(b),
|
||||||
|
m_dimA(A.cols()),
|
||||||
|
m_dimb(b.cols())
|
||||||
|
{ EIGEN_STATIC_ASSERT(false, COMPLEX_POWER_OF_A_MATRIX_IS_UNDER_CONSTRUCTION) }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Compute the matrix power.
|
||||||
|
*
|
||||||
|
* \param[out] result \f$ A^p b \f$, as specified in the constructor.
|
||||||
|
*/
|
||||||
|
template <typename ResultType> void compute(ResultType& result);
|
||||||
|
|
||||||
|
private:
|
||||||
|
/** \brief Compute Schur decomposition of #m_A. */
|
||||||
|
void computeSchurDecomposition();
|
||||||
|
|
||||||
|
/** \brief Compute atanh (inverse hyperbolic tangent). */
|
||||||
|
Scalar atanh(const Scalar& x);
|
||||||
|
|
||||||
|
/** \brief Compute power of 2x2 triangular matrix. */
|
||||||
|
void compute2x2(const Scalar& p);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Compute power of triangular matrices with size > 2.
|
||||||
|
* \details This uses a Schur-Padé algorithm.
|
||||||
|
*/
|
||||||
|
void computeBig();
|
||||||
|
|
||||||
|
/** \brief Get suitable degree for Pade approximation. (specialized for \c RealScalar = \c double) */
|
||||||
|
inline int getPadeDegree(double);
|
||||||
|
/* TODO
|
||||||
|
* inline int getPadeDegree(float);
|
||||||
|
*
|
||||||
|
* inline int getPadeDegree(long double);
|
||||||
|
*/
|
||||||
|
/** \brief Compute Padé approximation to matrix fractional power. */
|
||||||
|
void computePade(int degree, const MatrixType& IminusT);
|
||||||
|
|
||||||
|
/** \brief Get a certain coefficient of the Padé approximation. */
|
||||||
|
inline Scalar coeff(int degree);
|
||||||
|
|
||||||
|
const MatrixType& m_A; ///< \brief Reference to the matrix base.
|
||||||
|
const Scalar& m_p; ///< \brief Reference to the real exponent.
|
||||||
|
const PlainObject& m_b; ///< \brief Reference to the multiplier.
|
||||||
|
const Index m_dimA; ///< \brief The dimension of #m_A, equivalent to %m_A.cols().
|
||||||
|
const Index m_dimb; ///< \brief The dimension of #m_b, equivalent to %m_b.cols().
|
||||||
|
MatrixType m_tmp; ///< \brief Used for temporary storage.
|
||||||
|
MatrixType m_T; ///< \brief Triangular part of Schur decomposition.
|
||||||
|
MatrixType m_U; ///< \brief Unitary part of Schur decomposition.
|
||||||
|
MatrixType m_fT; ///< \brief #m_T to the power of #m_pfrac.
|
||||||
|
ArrayType m_logTdiag; ///< \brief Logarithm of the main diagonal of #m_T.
|
||||||
|
};
|
||||||
|
|
||||||
|
/******* Specialized for real exponents *******/
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
template <typename ResultType>
|
||||||
|
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::compute(ResultType& result)
|
||||||
|
{
|
||||||
|
using std::floor;
|
||||||
|
using std::pow;
|
||||||
|
|
||||||
|
m_pint = floor(m_p);
|
||||||
|
m_pfrac = m_p - m_pint;
|
||||||
|
|
||||||
|
if (m_pfrac == RealScalar(0))
|
||||||
|
computeIntPower(result);
|
||||||
|
else if (m_dimA == 1)
|
||||||
|
result = pow(m_A(0,0), m_p) * m_b;
|
||||||
|
else {
|
||||||
|
computeSchurDecomposition();
|
||||||
|
getFractionalExponent();
|
||||||
|
computeIntPower(result);
|
||||||
|
if (m_dimA == 2)
|
||||||
|
compute2x2(m_pfrac);
|
||||||
|
else
|
||||||
|
computeBig();
|
||||||
|
computeTmp(Scalar());
|
||||||
|
result *= m_tmp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
template <typename ResultType>
|
||||||
|
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::computeIntPower(ResultType& result)
|
||||||
|
{
|
||||||
|
if (m_dimb > m_dimA) {
|
||||||
|
MatrixType tmp = MatrixType::Identity(m_A.rows(), m_A.cols());
|
||||||
|
computeChainProduct(tmp);
|
||||||
|
result = tmp * m_b;
|
||||||
|
} else {
|
||||||
|
result = m_b;
|
||||||
|
computeChainProduct(result);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
template <typename ResultType>
|
||||||
|
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::computeChainProduct(ResultType& result)
|
||||||
|
{
|
||||||
|
using std::frexp;
|
||||||
|
using std::ldexp;
|
||||||
|
|
||||||
|
const bool pIsNegative = m_pint < RealScalar(0);
|
||||||
|
RealScalar p = pIsNegative? -m_pint: m_pint;
|
||||||
|
int cost = computeCost(p);
|
||||||
|
|
||||||
|
if (pIsNegative) {
|
||||||
|
if (p * m_dimb <= cost * m_dimA) {
|
||||||
|
partialPivLuSolve(p, result);
|
||||||
|
return;
|
||||||
|
} else {
|
||||||
|
m_tmp = m_A.inverse();
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
m_tmp = m_A;
|
||||||
|
}
|
||||||
|
while (p * m_dimb > cost * m_dimA) {
|
||||||
|
if (fmod(p, RealScalar(2)) >= RealScalar(1)) {
|
||||||
|
result = m_tmp * result;
|
||||||
|
cost--;
|
||||||
|
}
|
||||||
|
m_tmp *= m_tmp;
|
||||||
|
cost--;
|
||||||
|
p = ldexp(p, -1);
|
||||||
|
}
|
||||||
|
for (; p >= RealScalar(1); p--)
|
||||||
|
result = m_tmp * result;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
int MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::computeCost(RealScalar p)
|
||||||
|
{
|
||||||
|
using std::frexp;
|
||||||
|
using std::ldexp;
|
||||||
|
int cost, tmp;
|
||||||
|
frexp(p, &cost);
|
||||||
|
while (frexp(p, &tmp), tmp > 0) {
|
||||||
|
p -= ldexp(RealScalar(0.5), tmp);
|
||||||
|
cost++;
|
||||||
|
}
|
||||||
|
return cost;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
template <typename ResultType>
|
||||||
|
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::partialPivLuSolve(RealScalar p, ResultType& result)
|
||||||
|
{
|
||||||
|
const PartialPivLU<MatrixType> Asolver(m_A);
|
||||||
|
for (; p >= RealScalar(1); p--)
|
||||||
|
result = Asolver.solve(result);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::computeSchurDecomposition()
|
||||||
|
{
|
||||||
|
const ComplexSchur<MatrixType> schurOfA(m_A);
|
||||||
|
m_T = schurOfA.matrixT();
|
||||||
|
m_U = schurOfA.matrixU();
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::getFractionalExponent()
|
||||||
|
{
|
||||||
|
using std::pow;
|
||||||
|
|
||||||
|
typedef Array<RealScalar, Rows, 1, ColMajor, MaxRows> RealArray;
|
||||||
|
const ComplexArray Tdiag = m_T.diagonal();
|
||||||
|
RealScalar maxAbsEival, minAbsEival, *begin, *end;
|
||||||
|
RealArray absTdiag;
|
||||||
|
|
||||||
|
m_logTdiag = Tdiag.log();
|
||||||
|
absTdiag = Tdiag.abs();
|
||||||
|
maxAbsEival = minAbsEival = absTdiag[0];
|
||||||
|
begin = absTdiag.data();
|
||||||
|
end = begin + m_dimA;
|
||||||
|
|
||||||
|
// This avoids traversing the array twice.
|
||||||
|
for (RealScalar *ptr = begin + 1; ptr < end; ptr++) {
|
||||||
|
if (*ptr > maxAbsEival)
|
||||||
|
maxAbsEival = *ptr;
|
||||||
|
else if (*ptr < minAbsEival)
|
||||||
|
minAbsEival = *ptr;
|
||||||
|
}
|
||||||
|
if (m_pfrac > RealScalar(0.5) && // This is just a shortcut.
|
||||||
|
m_pfrac > (RealScalar(1) - m_pfrac) * pow(maxAbsEival/minAbsEival, m_pfrac)) {
|
||||||
|
m_pfrac--;
|
||||||
|
m_pint++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
std::complex<RealScalar> MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::atanh(const ComplexScalar& x)
|
||||||
|
{
|
||||||
|
using std::abs;
|
||||||
|
using std::log;
|
||||||
|
using std::sqrt;
|
||||||
|
|
||||||
|
if (abs(x) > sqrt(NumTraits<RealScalar>::epsilon()))
|
||||||
|
return RealScalar(0.5) * log((RealScalar(1) + x) / (RealScalar(1) - x));
|
||||||
|
else
|
||||||
|
return x + x*x*x / RealScalar(3);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::compute2x2(const RealScalar& p)
|
||||||
|
{
|
||||||
|
using std::abs;
|
||||||
|
using std::ceil;
|
||||||
|
using std::exp;
|
||||||
|
using std::imag;
|
||||||
|
using std::ldexp;
|
||||||
|
using std::log;
|
||||||
|
using std::pow;
|
||||||
|
using std::sinh;
|
||||||
|
|
||||||
|
int i, j, unwindingNumber;
|
||||||
|
ComplexScalar w;
|
||||||
|
|
||||||
|
m_fT(0,0) = pow(m_T(0,0), p);
|
||||||
|
|
||||||
|
for (j = 1; j < m_dimA; j++) {
|
||||||
|
i = j - 1;
|
||||||
|
m_fT(j,j) = pow(m_T(j,j), p);
|
||||||
|
|
||||||
|
if (m_T(i,i) == m_T(j,j))
|
||||||
|
m_fT(i,j) = p * pow(m_T(i,j), p - RealScalar(1));
|
||||||
|
else if (abs(m_T(i,i)) < ldexp(abs(m_T(j,j)), -1) || abs(m_T(j,j)) < ldexp(abs(m_T(i,i)), -1))
|
||||||
|
m_fT(i,j) = m_T(i,j) * (m_fT(j,j) - m_fT(i,i)) / (m_T(j,j) - m_T(i,i));
|
||||||
|
else {
|
||||||
|
// computation in previous branch is inaccurate if abs(m_T(j,j)) \approx abs(m_T(i,i))
|
||||||
|
unwindingNumber = static_cast<int>(ceil((imag(m_logTdiag[j] - m_logTdiag[i]) - M_PI) / (2 * M_PI)));
|
||||||
|
w = atanh((m_T(j,j) - m_T(i,i)) / (m_T(j,j) + m_T(i,i))) + ComplexScalar(0, M_PI * unwindingNumber);
|
||||||
|
m_fT(i,j) = m_T(i,j) * RealScalar(2) * exp(RealScalar(0.5) * p * (m_logTdiag[j] + m_logTdiag[i])) *
|
||||||
|
sinh(p * w) / (m_T(j,j) - m_T(i,i));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::computeBig()
|
||||||
|
{
|
||||||
|
using std::ldexp;
|
||||||
|
|
||||||
|
const RealScalar maxNormForPade = 2.787629930862099e-1;
|
||||||
|
int degree, degree2, numberOfSquareRoots = 0, numberOfExtraSquareRoots = 0;
|
||||||
|
ComplexMatrix IminusT, sqrtT, T = m_T;
|
||||||
|
RealScalar normIminusT;
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
IminusT = ComplexMatrix::Identity(m_A.rows(), m_A.cols()) - T;
|
||||||
|
normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
|
||||||
|
if (normIminusT < maxNormForPade) {
|
||||||
|
degree = getPadeDegree(normIminusT);
|
||||||
|
degree2 = getPadeDegree(normIminusT * RealScalar(0.5));
|
||||||
|
if (degree - degree2 <= 1 || numberOfExtraSquareRoots)
|
||||||
|
break;
|
||||||
|
numberOfExtraSquareRoots++;
|
||||||
|
}
|
||||||
|
MatrixSquareRootTriangular<ComplexMatrix>(T).compute(sqrtT);
|
||||||
|
T = sqrtT;
|
||||||
|
numberOfSquareRoots++;
|
||||||
|
}
|
||||||
|
computePade(degree, IminusT);
|
||||||
|
|
||||||
|
for (; numberOfSquareRoots; numberOfSquareRoots--) {
|
||||||
|
compute2x2(ldexp(m_pfrac, -numberOfSquareRoots));
|
||||||
|
m_fT *= m_fT;
|
||||||
|
}
|
||||||
|
compute2x2(m_pfrac);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
inline int MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::getPadeDegree(double normIminusT)
|
||||||
|
{
|
||||||
|
const double maxNormForPade[] = { 1.882832775783885e-2 /* degree = 3 */ , 6.036100693089764e-2,
|
||||||
|
1.239372725584911e-1, 1.998030690604271e-1, 2.787629930862099e-1 };
|
||||||
|
for (int degree = 3; degree <= 7; degree++)
|
||||||
|
if (normIminusT <= maxNormForPade[degree - 3])
|
||||||
|
return degree;
|
||||||
|
assert(false); // this line should never be reached
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::computePade(int degree, const ComplexMatrix& IminusT)
|
||||||
|
{
|
||||||
|
degree <<= 1;
|
||||||
|
m_fT = coeff(degree) * IminusT;
|
||||||
|
|
||||||
|
for (int i = degree - 1; i; i--) {
|
||||||
|
m_fT = (ComplexMatrix::Identity(m_A.rows(), m_A.cols()) + m_fT).template triangularView<Upper>()
|
||||||
|
.solve(coeff(i) * IminusT).eval();
|
||||||
|
}
|
||||||
|
m_fT += ComplexMatrix::Identity(m_A.rows(), m_A.cols());
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
inline RealScalar MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::coeff(int i)
|
||||||
|
{
|
||||||
|
if (i == 1)
|
||||||
|
return -m_pfrac;
|
||||||
|
else if (i & 1)
|
||||||
|
return (-m_pfrac - RealScalar(i)) / RealScalar((i<<2) + 2);
|
||||||
|
else
|
||||||
|
return (m_pfrac - RealScalar(i)) / RealScalar((i<<2) - 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::computeTmp(RealScalar)
|
||||||
|
{ m_tmp = (m_U * m_fT * m_U.adjoint()).real(); }
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
void MatrixPower<MatrixType,RealScalar,PlainObject,IsInteger>::computeTmp(ComplexScalar)
|
||||||
|
{ m_tmp = (m_U * m_fT * m_U.adjoint()).eval(); }
|
||||||
|
|
||||||
|
/******* Specialized for integral exponents *******/
|
||||||
|
|
||||||
|
template <typename MatrixType, typename IntExponent, typename PlainObject>
|
||||||
|
template <typename ResultType>
|
||||||
|
void MatrixPower<MatrixType,IntExponent,PlainObject,1>::compute(ResultType& result)
|
||||||
|
{
|
||||||
|
if (m_dimb > m_dimA) {
|
||||||
|
MatrixType tmp = MatrixType::Identity(m_dimA, m_dimA);
|
||||||
|
computeChainProduct(tmp);
|
||||||
|
result = tmp * m_b;
|
||||||
|
} else {
|
||||||
|
result = m_b;
|
||||||
|
computeChainProduct(result);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename IntExponent, typename PlainObject>
|
||||||
|
int MatrixPower<MatrixType,IntExponent,PlainObject,1>::computeCost(const IntExponent& p)
|
||||||
|
{
|
||||||
|
int cost = 0;
|
||||||
|
IntExponent tmp = p;
|
||||||
|
for (tmp = p >> 1; tmp; tmp >>= 1)
|
||||||
|
cost++;
|
||||||
|
for (tmp = IntExponent(1); tmp <= p; tmp <<= 1)
|
||||||
|
if (tmp & p) cost++;
|
||||||
|
return cost;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename IntExponent, typename PlainObject>
|
||||||
|
template <typename ResultType>
|
||||||
|
void MatrixPower<MatrixType,IntExponent,PlainObject,1>::partialPivLuSolve(IntExponent p, ResultType& result)
|
||||||
|
{
|
||||||
|
const PartialPivLU<MatrixType> Asolver(m_A);
|
||||||
|
for(; p; p--)
|
||||||
|
result = Asolver.solve(result);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename IntExponent, typename PlainObject>
|
||||||
|
template <typename ResultType>
|
||||||
|
void MatrixPower<MatrixType,IntExponent,PlainObject,1>::computeChainProduct(ResultType& result)
|
||||||
|
{
|
||||||
|
const bool pIsNegative = m_p < IntExponent(0);
|
||||||
|
IntExponent p = pIsNegative? -m_p: m_p;
|
||||||
|
int cost = computeCost(p);
|
||||||
|
|
||||||
|
if (pIsNegative) {
|
||||||
|
if (p * m_dimb <= cost * m_dimA) {
|
||||||
|
partialPivLuSolve(p, result);
|
||||||
|
return;
|
||||||
|
} else { m_tmp = m_A.inverse(); }
|
||||||
|
} else { m_tmp = m_A; }
|
||||||
|
|
||||||
|
while (p * m_dimb > cost * m_dimA) {
|
||||||
|
if (p & 1) {
|
||||||
|
result = m_tmp * result;
|
||||||
|
cost--;
|
||||||
|
}
|
||||||
|
m_tmp *= m_tmp;
|
||||||
|
cost--;
|
||||||
|
p >>= 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (; p; p--)
|
||||||
|
result = m_tmp * result;
|
||||||
|
}
|
||||||
|
|
||||||
|
/******* Specialized for complex exponents *******/
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
template <typename ResultType>
|
||||||
|
void MatrixPower<MatrixType,std::complex<RealScalar>,PlainObject,IsInteger>::compute(ResultType& result)
|
||||||
|
{
|
||||||
|
using std::floor;
|
||||||
|
using std::pow;
|
||||||
|
|
||||||
|
if (m_dimA == 1)
|
||||||
|
result = pow(m_A(0,0), m_p) * m_b;
|
||||||
|
else {
|
||||||
|
computeSchurDecomposition();
|
||||||
|
if (m_dimA == 2)
|
||||||
|
compute2x2(m_p);
|
||||||
|
else
|
||||||
|
computeBig();
|
||||||
|
result = m_U * m_fT * m_U.adjoint();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
void MatrixPower<MatrixType,std::complex<RealScalar>,PlainObject,IsInteger>::computeSchurDecomposition()
|
||||||
|
{
|
||||||
|
const ComplexSchur<MatrixType> schurOfA(m_A);
|
||||||
|
m_T = schurOfA.matrixT();
|
||||||
|
m_U = schurOfA.matrixU();
|
||||||
|
m_logTdiag = m_T.diagonal().array().log();
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
typename MatrixType::Scalar MatrixPower<MatrixType,std::complex<RealScalar>,PlainObject,IsInteger>::atanh(const Scalar& x)
|
||||||
|
{
|
||||||
|
using std::abs;
|
||||||
|
using std::log;
|
||||||
|
using std::sqrt;
|
||||||
|
|
||||||
|
if (abs(x) > sqrt(NumTraits<RealScalar>::epsilon()))
|
||||||
|
return RealScalar(0.5) * log((RealScalar(1) + x) / (RealScalar(1) - x));
|
||||||
|
else
|
||||||
|
return x + x*x*x / RealScalar(3);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
void MatrixPower<MatrixType,std::complex<RealScalar>,PlainObject,IsInteger>::compute2x2(const Scalar& p)
|
||||||
|
{
|
||||||
|
using std::abs;
|
||||||
|
using std::ceil;
|
||||||
|
using std::exp;
|
||||||
|
using std::imag;
|
||||||
|
using std::ldexp;
|
||||||
|
using std::log;
|
||||||
|
using std::pow;
|
||||||
|
using std::sinh;
|
||||||
|
|
||||||
|
int i, j, unwindingNumber;
|
||||||
|
Scalar w;
|
||||||
|
|
||||||
|
m_fT(0,0) = pow(m_T(0,0), p);
|
||||||
|
|
||||||
|
for (j = 1; j < m_dimA; j++) {
|
||||||
|
i = j - 1;
|
||||||
|
m_fT(j,j) = pow(m_T(j,j), p);
|
||||||
|
|
||||||
|
if (m_T(i,i) == m_T(j,j))
|
||||||
|
m_fT(i,j) = p * pow(m_T(i,j), p - RealScalar(1));
|
||||||
|
else if (abs(m_T(i,i)) < ldexp(abs(m_T(j,j)), -1) || abs(m_T(j,j)) < ldexp(abs(m_T(i,i)), -1))
|
||||||
|
m_fT(i,j) = m_T(i,j) * (m_fT(j,j) - m_fT(i,i)) / (m_T(j,j) - m_T(i,i));
|
||||||
|
else {
|
||||||
|
// computation in previous branch is inaccurate if abs(m_T(j,j)) \approx abs(m_T(i,i))
|
||||||
|
unwindingNumber = static_cast<int>(ceil((imag(m_logTdiag[j] - m_logTdiag[i]) - M_PI) / (2 * M_PI)));
|
||||||
|
w = atanh((m_T(j,j) - m_T(i,i)) / (m_T(j,j) + m_T(i,i))) + Scalar(0, M_PI * unwindingNumber);
|
||||||
|
m_fT(i,j) = m_T(i,j) * RealScalar(2) * exp(RealScalar(0.5) * p * (m_logTdiag[j] + m_logTdiag[i])) *
|
||||||
|
sinh(p * w) / (m_T(j,j) - m_T(i,i));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
void MatrixPower<MatrixType,std::complex<RealScalar>,PlainObject,IsInteger>::computeBig()
|
||||||
|
{
|
||||||
|
using std::abs;
|
||||||
|
using std::ceil;
|
||||||
|
using std::frexp;
|
||||||
|
using std::ldexp;
|
||||||
|
|
||||||
|
const RealScalar maxNormForPade = 2.787629930862099e-1;
|
||||||
|
int degree, degree2, numberOfSquareRoots, numberOfExtraSquareRoots = 0;
|
||||||
|
MatrixType IminusT, sqrtT, T = m_T;
|
||||||
|
RealScalar normIminusT;
|
||||||
|
Scalar p;
|
||||||
|
/*
|
||||||
|
frexp(abs(m_p), &numberOfSquareRoots);
|
||||||
|
if (numberOfSquareRoots > 0)
|
||||||
|
p = m_p * ldexp(RealScalar(1), -numberOfSquareRoots);
|
||||||
|
else {
|
||||||
|
p = m_p;
|
||||||
|
numberOfSquareRoots = 0;
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
while (true) {
|
||||||
|
IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
|
||||||
|
normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
|
||||||
|
if (normIminusT < maxNormForPade) {
|
||||||
|
degree = getPadeDegree(normIminusT);
|
||||||
|
degree2 = getPadeDegree(normIminusT * RealScalar(0.5));
|
||||||
|
if (degree - degree2 <= 1 || numberOfExtraSquareRoots)
|
||||||
|
break;
|
||||||
|
numberOfExtraSquareRoots++;
|
||||||
|
}
|
||||||
|
MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
|
||||||
|
T = sqrtT;
|
||||||
|
numberOfSquareRoots++;
|
||||||
|
}
|
||||||
|
computePade(degree, IminusT);
|
||||||
|
|
||||||
|
for (; numberOfSquareRoots; numberOfSquareRoots--) {
|
||||||
|
compute2x2(p * ldexp(RealScalar(1), -numberOfSquareRoots));
|
||||||
|
m_fT *= m_fT;
|
||||||
|
}
|
||||||
|
compute2x2(p);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
inline int MatrixPower<MatrixType,std::complex<RealScalar>,PlainObject,IsInteger>::getPadeDegree(double normIminusT)
|
||||||
|
{
|
||||||
|
const double maxNormForPade[] = { 1.882832775783885e-2 /* degree = 3 */ , 6.036100693089764e-2,
|
||||||
|
1.239372725584911e-1, 1.998030690604271e-1, 2.787629930862099e-1 };
|
||||||
|
for (int degree = 3; degree <= 7; degree++)
|
||||||
|
if (normIminusT <= maxNormForPade[degree - 3])
|
||||||
|
return degree;
|
||||||
|
assert(false); // this line should never be reached
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
void MatrixPower<MatrixType,std::complex<RealScalar>,PlainObject,IsInteger>::computePade(int degree, const MatrixType& IminusT)
|
||||||
|
{
|
||||||
|
degree <<= 1;
|
||||||
|
m_fT = coeff(degree) * IminusT;
|
||||||
|
|
||||||
|
for (int i = degree - 1; i; i--) {
|
||||||
|
m_fT = (MatrixType::Identity(m_A.rows(), m_A.cols()) + m_fT).template triangularView<Upper>()
|
||||||
|
.solve(coeff(i) * IminusT).eval();
|
||||||
|
}
|
||||||
|
m_fT += MatrixType::Identity(m_A.rows(), m_A.cols());
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename MatrixType, typename RealScalar, typename PlainObject, int IsInteger>
|
||||||
|
inline typename MatrixType::Scalar MatrixPower<MatrixType,std::complex<RealScalar>,PlainObject,IsInteger>::coeff(int i)
|
||||||
|
{
|
||||||
|
if (i == 1)
|
||||||
|
return -m_p;
|
||||||
|
else if (i & 1)
|
||||||
|
return (-m_p - RealScalar(i)) / RealScalar((i<<2) + 2);
|
||||||
|
else
|
||||||
|
return (m_p - RealScalar(i)) / RealScalar((i<<2) - 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \ingroup MatrixFunctions_Module
|
||||||
|
*
|
||||||
|
* \brief Proxy for the matrix power multiplied by another matrix
|
||||||
|
* (expression).
|
||||||
|
*
|
||||||
|
* \tparam MatrixType type of the base, a matrix (expression).
|
||||||
|
* \tparam ExponentType type of the exponent, a scalar.
|
||||||
|
* \tparam Derived type of the multiplier, a matrix (expression).
|
||||||
|
*
|
||||||
|
* This class holds the arguments to the matrix expression until it is
|
||||||
|
* assigned or evaluated for some other reason (so the argument
|
||||||
|
* should not be changed in the meantime). It is the return type of
|
||||||
|
* MatrixPowerReturnValue::operator*() and most of the time this is the
|
||||||
|
* only way it is used.
|
||||||
|
*/
|
||||||
|
template<typename MatrixType, typename ExponentType, typename Derived> class MatrixPowerMultiplied
|
||||||
|
: public ReturnByValue<MatrixPowerMultiplied<MatrixType, ExponentType, Derived> >
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
typedef typename Derived::Index Index;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Constructor.
|
||||||
|
*
|
||||||
|
* \param[in] A %Matrix (expression), the base of the matrix power.
|
||||||
|
* \param[in] p scalar, the exponent of the matrix power.
|
||||||
|
* \param[in] b %Matrix (expression), the multiplier.
|
||||||
|
*/
|
||||||
|
MatrixPowerMultiplied(const MatrixType& A, const ExponentType& p, const Derived& b)
|
||||||
|
: m_A(A), m_p(p), m_b(b) { }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Compute the matrix exponential.
|
||||||
|
*
|
||||||
|
* \param[out] result \f$ A^p b \f$ where \c A ,\c p and \c b are as in
|
||||||
|
* the constructor.
|
||||||
|
*/
|
||||||
|
template <typename ResultType>
|
||||||
|
inline void evalTo(ResultType& result) const
|
||||||
|
{
|
||||||
|
typedef typename Derived::PlainObject PlainObject;
|
||||||
|
const typename MatrixType::PlainObject Aevaluated = m_A.eval();
|
||||||
|
const PlainObject bevaluated = m_b.eval();
|
||||||
|
MatrixPower<MatrixType, ExponentType, PlainObject> mp(Aevaluated, m_p, bevaluated);
|
||||||
|
mp.compute(result);
|
||||||
|
}
|
||||||
|
|
||||||
|
Index rows() const { return m_b.rows(); }
|
||||||
|
Index cols() const { return m_b.cols(); }
|
||||||
|
|
||||||
|
private:
|
||||||
|
const MatrixType& m_A;
|
||||||
|
const ExponentType& m_p;
|
||||||
|
const Derived& m_b;
|
||||||
|
|
||||||
|
MatrixPowerMultiplied& operator=(const MatrixPowerMultiplied&);
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \ingroup MatrixFunctions_Module
|
||||||
|
*
|
||||||
|
* \brief Proxy for the matrix power of some matrix (expression).
|
||||||
|
*
|
||||||
|
* \tparam Derived type of the base, a matrix (expression).
|
||||||
|
* \tparam ExponentType type of the exponent, a scalar.
|
||||||
|
*
|
||||||
|
* This class holds the arguments to the matrix power until it is
|
||||||
|
* assigned or evaluated for some other reason (so the argument
|
||||||
|
* should not be changed in the meantime). It is the return type of
|
||||||
|
* MatrixBase::pow() and related functions and most of the
|
||||||
|
* time this is the only way it is used.
|
||||||
|
*/
|
||||||
|
template<typename Derived, typename ExponentType> class MatrixPowerReturnValue
|
||||||
|
: public ReturnByValue<MatrixPowerReturnValue<Derived, ExponentType> >
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
typedef typename Derived::Index Index;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Constructor.
|
||||||
|
*
|
||||||
|
* \param[in] A %Matrix (expression), the base of the matrix power.
|
||||||
|
* \param[in] p scalar, the exponent of the matrix power.
|
||||||
|
*/
|
||||||
|
MatrixPowerReturnValue(const Derived& A, const ExponentType& p)
|
||||||
|
: m_A(A), m_p(p) { }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Return the matrix power multiplied by %Matrix \c b.
|
||||||
|
*
|
||||||
|
* The %MatrixPower class can optimize \f$ A^p b \f$ computing, and this
|
||||||
|
* method provides an elegant way to call it:
|
||||||
|
*
|
||||||
|
* \param[in] b %Matrix (exporession), the multiplier.
|
||||||
|
*/
|
||||||
|
template <typename OtherDerived>
|
||||||
|
const MatrixPowerMultiplied<Derived, ExponentType, OtherDerived> operator*(const MatrixBase<OtherDerived>& b) const
|
||||||
|
{ return MatrixPowerMultiplied<Derived, ExponentType, OtherDerived>(m_A, m_p, b.derived()); }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Compute the matrix power.
|
||||||
|
*
|
||||||
|
* \param[out] result \f$ A^p \f$ where \c A and \c p are as in the
|
||||||
|
* constructor.
|
||||||
|
*/
|
||||||
|
template <typename ResultType>
|
||||||
|
inline void evalTo(ResultType& result) const
|
||||||
|
{
|
||||||
|
typedef typename Derived::PlainObject PlainObject;
|
||||||
|
const PlainObject Aevaluated = m_A.eval();
|
||||||
|
const PlainObject Identity = PlainObject::Identity(m_A.rows(), m_A.cols());
|
||||||
|
MatrixPower<PlainObject, ExponentType> mp(Aevaluated, m_p, Identity);
|
||||||
|
mp.compute(result);
|
||||||
|
}
|
||||||
|
|
||||||
|
Index rows() const { return m_A.rows(); }
|
||||||
|
Index cols() const { return m_A.cols(); }
|
||||||
|
|
||||||
|
private:
|
||||||
|
const Derived& m_A;
|
||||||
|
const ExponentType& m_p;
|
||||||
|
|
||||||
|
MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
|
||||||
|
};
|
||||||
|
|
||||||
|
namespace internal {
|
||||||
|
template<typename MatrixType, typename ExponentType, typename Derived>
|
||||||
|
struct traits<MatrixPowerMultiplied<MatrixType, ExponentType, Derived> >
|
||||||
|
{
|
||||||
|
typedef typename Derived::PlainObject ReturnType;
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Derived, typename ExponentType>
|
||||||
|
struct traits<MatrixPowerReturnValue<Derived, ExponentType> >
|
||||||
|
{
|
||||||
|
typedef typename Derived::PlainObject ReturnType;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Derived>
|
||||||
|
template <typename ExponentType>
|
||||||
|
const MatrixPowerReturnValue<Derived, ExponentType> MatrixBase<Derived>::pow(const ExponentType& p) const
|
||||||
|
{
|
||||||
|
eigen_assert(rows() == cols());
|
||||||
|
return MatrixPowerReturnValue<Derived, ExponentType>(derived(), p);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // end namespace Eigen
|
||||||
|
|
||||||
|
#endif // EIGEN_MATRIX_POWER
|
Loading…
x
Reference in New Issue
Block a user