mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 03:39:01 +08:00
Added support for patch extraction
This commit is contained in:
parent
0219f8aed4
commit
4c70b0a762
@ -1,6 +1,7 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
||||
// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
@ -27,6 +28,11 @@
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstring>
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
|
||||
#include <curand_kernel.h>
|
||||
#endif
|
||||
|
||||
#include "Eigen/Core"
|
||||
|
||||
@ -46,6 +52,7 @@
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h"
|
||||
#include "unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h"
|
||||
|
@ -243,6 +243,12 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
||||
return TensorConcatenationOp<Axis, const Derived, const OtherDerived>(derived(), other.derived(), axis);
|
||||
}
|
||||
|
||||
template <typename PatchDims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorPatchOp<const PatchDims, const Derived>
|
||||
extract_patches(const PatchDims& patch_dims) const {
|
||||
return TensorPatchOp<const PatchDims, const Derived>(derived(), patch_dims);
|
||||
}
|
||||
|
||||
// Morphing operators.
|
||||
template <typename NewDimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const TensorReshapingOp<const NewDimensions, const Derived>
|
||||
|
@ -25,6 +25,7 @@ template<typename Op, typename Dims, typename XprType> class TensorReductionOp;
|
||||
template<typename Axis, typename LeftXprType, typename RightXprType> class TensorConcatenationOp;
|
||||
template<typename Dimensions, typename LeftXprType, typename RightXprType> class TensorContractionOp;
|
||||
template<typename Dimensions, typename InputXprType, typename KernelXprType> class TensorConvolutionOp;
|
||||
template<typename PatchDim, typename XprType> class TensorPatchOp;
|
||||
template<typename Broadcast, typename XprType> class TensorBroadcastingOp;
|
||||
template<std::size_t DimId, typename XprType> class TensorChippingOp;
|
||||
template<typename NewDimensions, typename XprType> class TensorReshapingOp;
|
||||
|
212
unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h
Normal file
212
unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h
Normal file
@ -0,0 +1,212 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_CXX11_TENSOR_TENSOR_PATCH_H
|
||||
#define EIGEN_CXX11_TENSOR_TENSOR_PATCH_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class TensorPatch
|
||||
* \ingroup CXX11_Tensor_Module
|
||||
*
|
||||
* \brief Tensor patch class.
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template<typename PatchDim, typename XprType>
|
||||
struct traits<TensorPatchOp<PatchDim, XprType> > : public traits<XprType>
|
||||
{
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename internal::packet_traits<Scalar>::type Packet;
|
||||
typedef typename traits<XprType>::StorageKind StorageKind;
|
||||
typedef typename traits<XprType>::Index Index;
|
||||
typedef typename XprType::Nested Nested;
|
||||
typedef typename remove_reference<Nested>::type _Nested;
|
||||
};
|
||||
|
||||
template<typename PatchDim, typename XprType>
|
||||
struct eval<TensorPatchOp<PatchDim, XprType>, Eigen::Dense>
|
||||
{
|
||||
typedef const TensorPatchOp<PatchDim, XprType>& type;
|
||||
};
|
||||
|
||||
template<typename PatchDim, typename XprType>
|
||||
struct nested<TensorPatchOp<PatchDim, XprType>, 1, typename eval<TensorPatchOp<PatchDim, XprType> >::type>
|
||||
{
|
||||
typedef TensorPatchOp<PatchDim, XprType> type;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
|
||||
|
||||
template<typename PatchDim, typename XprType>
|
||||
class TensorPatchOp : public TensorBase<TensorPatchOp<PatchDim, XprType>, ReadOnlyAccessors>
|
||||
{
|
||||
public:
|
||||
typedef typename Eigen::internal::traits<TensorPatchOp>::Scalar Scalar;
|
||||
typedef typename Eigen::internal::traits<TensorPatchOp>::Packet Packet;
|
||||
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef typename XprType::PacketReturnType PacketReturnType;
|
||||
typedef typename Eigen::internal::nested<TensorPatchOp>::type Nested;
|
||||
typedef typename Eigen::internal::traits<TensorPatchOp>::StorageKind StorageKind;
|
||||
typedef typename Eigen::internal::traits<TensorPatchOp>::Index Index;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPatchOp(const XprType& expr, const PatchDim& patch_dims)
|
||||
: m_xpr(expr), m_patch_dims(patch_dims) {}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const PatchDim& patch_dims() const { return m_patch_dims; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const typename internal::remove_all<typename XprType::Nested>::type&
|
||||
expression() const { return m_xpr; }
|
||||
|
||||
protected:
|
||||
typename XprType::Nested m_xpr;
|
||||
const PatchDim m_patch_dims;
|
||||
};
|
||||
|
||||
|
||||
// Eval as rvalue
|
||||
template<typename PatchDim, typename ArgType, typename Device>
|
||||
struct TensorEvaluator<const TensorPatchOp<PatchDim, ArgType>, Device>
|
||||
{
|
||||
typedef TensorPatchOp<PatchDim, ArgType> XprType;
|
||||
typedef typename XprType::Index Index;
|
||||
static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value + 1;
|
||||
typedef DSizes<Index, NumDims> Dimensions;
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
|
||||
enum {
|
||||
IsAligned = false,
|
||||
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||
: m_impl(op.expression(), device)
|
||||
{
|
||||
Index num_patches = 1;
|
||||
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
||||
const PatchDim& patch_dims = op.patch_dims();
|
||||
for (int i = 0; i < NumDims-1; ++i) {
|
||||
m_dimensions[i] = patch_dims[i];
|
||||
num_patches *= (input_dims[i] - patch_dims[i] + 1);
|
||||
}
|
||||
m_dimensions[NumDims-1] = num_patches;
|
||||
|
||||
m_inputStrides[0] = 1;
|
||||
m_patchStrides[0] = 1;
|
||||
for (int i = 1; i < NumDims-1; ++i) {
|
||||
m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
|
||||
m_patchStrides[i] = m_patchStrides[i-1] * (input_dims[i-1] - patch_dims[i-1] + 1);
|
||||
}
|
||||
m_outputStrides[0] = 1;
|
||||
for (int i = 1; i < NumDims; ++i) {
|
||||
m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
|
||||
}
|
||||
}
|
||||
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef typename XprType::PacketReturnType PacketReturnType;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
|
||||
m_impl.evalSubExprsIfNeeded(NULL);
|
||||
return true;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
||||
m_impl.cleanup();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
||||
{
|
||||
// Find the location of the first element of the patch.
|
||||
Index patchIndex = index / m_outputStrides[NumDims - 1];
|
||||
// Find the offset of the element wrt the location of the first element.
|
||||
Index patchOffset = index - patchIndex * m_outputStrides[NumDims - 1];
|
||||
|
||||
Index inputIndex = 0;
|
||||
for (int i = NumDims - 2; i > 0; --i) {
|
||||
const Index patchIdx = patchIndex / m_patchStrides[i];
|
||||
patchIndex -= patchIdx * m_patchStrides[i];
|
||||
const Index offsetIdx = patchOffset / m_outputStrides[i];
|
||||
patchOffset -= offsetIdx * m_outputStrides[i];
|
||||
inputIndex += (patchIdx + offsetIdx) * m_inputStrides[i];
|
||||
}
|
||||
inputIndex += (patchIndex + patchOffset);
|
||||
return m_impl.coeff(inputIndex);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
||||
{
|
||||
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
|
||||
|
||||
Index indices[2] = {index, index + packetSize - 1};
|
||||
Index patchIndices[2] = {indices[0] / m_outputStrides[NumDims - 1],
|
||||
indices[1] / m_outputStrides[NumDims - 1]};
|
||||
Index patchOffsets[2] = {indices[0] - patchIndices[0] * m_outputStrides[NumDims - 1],
|
||||
indices[1] - patchIndices[1] * m_outputStrides[NumDims - 1]};
|
||||
|
||||
Index inputIndices[2] = {0, 0};
|
||||
for (int i = NumDims - 2; i > 0; --i) {
|
||||
const Index patchIdx[2] = {patchIndices[0] / m_patchStrides[i],
|
||||
patchIndices[1] / m_patchStrides[i]};
|
||||
patchIndices[0] -= patchIdx[0] * m_patchStrides[i];
|
||||
patchIndices[1] -= patchIdx[1] * m_patchStrides[i];
|
||||
|
||||
const Index offsetIdx[2] = {patchOffsets[0] / m_outputStrides[i],
|
||||
patchOffsets[1] / m_outputStrides[i]};
|
||||
patchOffsets[0] -= offsetIdx[0] * m_outputStrides[i];
|
||||
patchOffsets[1] -= offsetIdx[1] * m_outputStrides[i];
|
||||
|
||||
inputIndices[0] += (patchIdx[0] + offsetIdx[0]) * m_inputStrides[i];
|
||||
inputIndices[1] += (patchIdx[1] + offsetIdx[1]) * m_inputStrides[i];
|
||||
}
|
||||
inputIndices[0] += (patchIndices[0] + patchOffsets[0]);
|
||||
inputIndices[1] += (patchIndices[1] + patchOffsets[1]);
|
||||
|
||||
if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
|
||||
PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
|
||||
return rslt;
|
||||
}
|
||||
else {
|
||||
EIGEN_ALIGN_DEFAULT CoeffReturnType values[packetSize];
|
||||
values[0] = m_impl.coeff(inputIndices[0]);
|
||||
values[packetSize-1] = m_impl.coeff(inputIndices[1]);
|
||||
for (int i = 1; i < packetSize-1; ++i) {
|
||||
values[i] = coeff(index+i);
|
||||
}
|
||||
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
|
||||
return rslt;
|
||||
}
|
||||
}
|
||||
|
||||
Scalar* data() const { return NULL; }
|
||||
|
||||
protected:
|
||||
Dimensions m_dimensions;
|
||||
array<Index, NumDims> m_outputStrides;
|
||||
array<Index, NumDims-1> m_inputStrides;
|
||||
array<Index, NumDims-1> m_patchStrides;
|
||||
|
||||
TensorEvaluator<ArgType, Device> m_impl;
|
||||
};
|
||||
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CXX11_TENSOR_TENSOR_PATCH_H
|
@ -119,6 +119,7 @@ if(EIGEN_TEST_CXX11)
|
||||
ei_add_test(cxx11_tensor_concatenation "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_morphing "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_padding "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_patch "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_reduction "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_shuffling "-std=c++0x")
|
||||
ei_add_test(cxx11_tensor_striding "-std=c++0x")
|
||||
|
103
unsupported/test/cxx11_tensor_patch.cpp
Normal file
103
unsupported/test/cxx11_tensor_patch.cpp
Normal file
@ -0,0 +1,103 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "main.h"
|
||||
|
||||
#include <Eigen/CXX11/Tensor>
|
||||
|
||||
using Eigen::Tensor;
|
||||
|
||||
static void test_simple_patch()
|
||||
{
|
||||
Tensor<float, 4> tensor(2,3,5,7);
|
||||
tensor.setRandom();
|
||||
array<ptrdiff_t, 4> patch_dims;
|
||||
patch_dims[0] = 1;
|
||||
patch_dims[1] = 1;
|
||||
patch_dims[2] = 1;
|
||||
patch_dims[3] = 1;
|
||||
|
||||
Tensor<float, 5> no_patch;
|
||||
no_patch = tensor.extract_patches(patch_dims);
|
||||
|
||||
VERIFY_IS_EQUAL(no_patch.dimension(0), 1);
|
||||
VERIFY_IS_EQUAL(no_patch.dimension(1), 1);
|
||||
VERIFY_IS_EQUAL(no_patch.dimension(2), 1);
|
||||
VERIFY_IS_EQUAL(no_patch.dimension(3), 1);
|
||||
VERIFY_IS_EQUAL(no_patch.dimension(4), tensor.size());
|
||||
|
||||
for (int i = 0; i < tensor.size(); ++i) {
|
||||
VERIFY_IS_EQUAL(tensor.data()[i], no_patch.data()[i]);
|
||||
}
|
||||
|
||||
patch_dims[0] = 1;
|
||||
patch_dims[1] = 2;
|
||||
patch_dims[2] = 2;
|
||||
patch_dims[3] = 1;
|
||||
Tensor<float, 5> twod_patch;
|
||||
twod_patch = tensor.extract_patches(patch_dims);
|
||||
|
||||
VERIFY_IS_EQUAL(twod_patch.dimension(0), 1);
|
||||
VERIFY_IS_EQUAL(twod_patch.dimension(1), 2);
|
||||
VERIFY_IS_EQUAL(twod_patch.dimension(2), 2);
|
||||
VERIFY_IS_EQUAL(twod_patch.dimension(3), 1);
|
||||
VERIFY_IS_EQUAL(twod_patch.dimension(4), 2*2*4*7);
|
||||
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
for (int k = 0; k < 4; ++k) {
|
||||
for (int l = 0; l < 7; ++l) {
|
||||
int patch_loc = i + 2 * (j + 2 * (k + 4 * l));
|
||||
for (int x = 0; x < 2; ++x) {
|
||||
for (int y = 0; y < 2; ++y) {
|
||||
VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l), twod_patch(0,x,y,0,patch_loc));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
patch_dims[0] = 1;
|
||||
patch_dims[1] = 2;
|
||||
patch_dims[2] = 3;
|
||||
patch_dims[3] = 5;
|
||||
Tensor<float, 5> threed_patch;
|
||||
threed_patch = tensor.extract_patches(patch_dims);
|
||||
|
||||
VERIFY_IS_EQUAL(threed_patch.dimension(0), 1);
|
||||
VERIFY_IS_EQUAL(threed_patch.dimension(1), 2);
|
||||
VERIFY_IS_EQUAL(threed_patch.dimension(2), 3);
|
||||
VERIFY_IS_EQUAL(threed_patch.dimension(3), 5);
|
||||
VERIFY_IS_EQUAL(threed_patch.dimension(4), 2*2*3*3);
|
||||
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
for (int k = 0; k < 3; ++k) {
|
||||
for (int l = 0; l < 3; ++l) {
|
||||
int patch_loc = i + 2 * (j + 2 * (k + 3 * l));
|
||||
for (int x = 0; x < 2; ++x) {
|
||||
for (int y = 0; y < 3; ++y) {
|
||||
for (int z = 0; z < 5; ++z) {
|
||||
VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l+z), threed_patch(0,x,y,z,patch_loc));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void test_cxx11_tensor_patch()
|
||||
{
|
||||
CALL_SUBTEST(test_simple_patch());
|
||||
// CALL_SUBTEST(test_expr_shuffling());
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user