clean a bit the ILUT code

This commit is contained in:
Gael Guennebaud 2012-02-14 22:07:19 +01:00
parent ef448da57b
commit 4cc6d7aa62
2 changed files with 283 additions and 230 deletions

View File

@ -2,6 +2,7 @@
#define EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
#include "SparseCore"
#include "OrderingMethods"
#include "src/Core/util/DisableStupidWarnings.h"
@ -15,6 +16,11 @@ namespace Eigen {
* - ConjugateGradient for selfadjoint (hermitian) matrices,
* - BiCGSTAB for general square matrices.
*
* These iterative solvers are associated with some preconditioners:
* - IdentityPreconditioner - not really useful
* - DiagonalPreconditioner - also called JAcobi preconditioner, work very well on diagonal dominant matrices.
* - IncompleteILUT - incomplete LU factorization with dual thresholding
*
* Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport.
*
* \code

View File

@ -24,15 +24,13 @@
#ifndef EIGEN_INCOMPLETE_LUT_H
#define EIGEN_INCOMPLETE_LUT_H
#include <bench/btl/generic_bench/utils/utilities.h>
#include <Eigen/src/OrderingMethods/Amd.h>
/**
* \brief Incomplete LU factorization with dual-threshold strategy
* During the numerical factorization, two dropping rules are used :
* 1) any element whose magnitude is less than some tolerance is dropped.
* 1) any element whose magnitude is less than some tolerance is dropped.
* This tolerance is obtained by multiplying the input tolerance @p droptol
* by the average magnitude of all the original elements in the current row.
* by the average magnitude of all the original elements in the current row.
* 2) After the elimination of the row, only the @p fill largest elements in
* the L part and the @p fill largest elements in the U part are kept
* (in addition to the diagonal element ). Note that @p fill is computed from
@ -63,11 +61,15 @@ class IncompleteLUT
public:
typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
IncompleteLUT() : m_droptol(NumTraits<Scalar>::dummy_precision()),m_fillfactor(10),m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false) {}
IncompleteLUT()
: m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
{}
template<typename MatrixType>
IncompleteLUT(const MatrixType& mat, RealScalar droptol, int fillfactor)
: m_droptol(droptol),m_fillfactor(fillfactor),m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
IncompleteLUT(const MatrixType& mat, RealScalar droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
: m_droptol(droptol),m_fillfactor(fillfactor),
m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
{
eigen_assert(fillfactor != 0);
compute(mat);
@ -76,206 +78,24 @@ class IncompleteLUT
Index rows() const { return m_lu.rows(); }
Index cols() const { return m_lu.cols(); }
template<typename MatrixType>
void analyzePattern(const MatrixType& amat)
{
/* Compute the Fill-reducing permutation */
SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 * mat1; /* Symmetrize the pattern */
AtA.prune(keep_diag());
internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); /* Then compute the AMD ordering... */
m_Pinv = m_P.inverse(); /* ... and the inverse permutation */
m_analysisIsOk = true;
}
template<typename MatrixType>
void factorize(const MatrixType& amat)
{
eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
int n = amat.cols(); /* Size of the matrix */
m_lu.resize(n,n);
int fill_in; /* Number of largest elements to keep in each row */
int nnzL, nnzU; /* Number of largest nonzero elements to keep in the L and the U part of the current row */
/* Declare Working vectors and variables */
int sizeu; /* number of nonzero elements in the upper part of the current row */
int sizel; /* number of nonzero elements in the lower part of the current row */
Vector u(n) ; /* real values of the row -- maximum size is n -- */
VectorXi ju(n); /*column position of the values in u -- maximum size is n*/
VectorXi jr(n); /* Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1*/
int j, k, jj, jpos, minrow, len;
Scalar fact, prod;
RealScalar rownorm;
/* Apply the fill-reducing permutation */
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
SparseMatrix<Scalar,RowMajor, Index> mat;
mat = amat.twistedBy(m_Pinv);
/* Initialization */
fact = 0;
jr.fill(-1);
ju.fill(0);
u.fill(0);
fill_in = static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1;
if (fill_in > n) fill_in = n;
nnzL = fill_in/2;
nnzU = nnzL;
m_lu.reserve(n * (nnzL + nnzU + 1));
for (int ii = 0; ii < n; ii++)
{ /* global loop over the rows of the sparse matrix */
/* Copy the lower and the upper part of the row i of mat in the working vector u */
sizeu = 1;
sizel = 0;
ju(ii) = ii;
u(ii) = 0;
jr(ii) = ii;
rownorm = 0;
typename FactorType::InnerIterator j_it(mat, ii); /* Iterate through the current row ii */
for (; j_it; ++j_it)
{
k = j_it.index();
if (k < ii)
{ /* Copy the lower part */
ju(sizel) = k;
u(sizel) = j_it.value();
jr(k) = sizel;
++sizel;
}
else if (k == ii)
{
u(ii) = j_it.value();
}
else
{ /* Copy the upper part */
jpos = ii + sizeu;
ju(jpos) = k;
u(jpos) = j_it.value();
jr(k) = jpos;
++sizeu;
}
rownorm += internal::abs2(j_it.value());
} /* end copy of the row */
/* detect possible zero row */
if (rownorm == 0) eigen_internal_assert(false);
rownorm = std::sqrt(rownorm); /* Take the 2-norm of the current row as a relative tolerance */
/* Now, eliminate the previous nonzero rows */
jj = 0; len = 0;
while (jj < sizel)
{ /* In order to eliminate in the correct order, we must select first the smallest column index among ju(jj:sizel) */
minrow = ju.segment(jj,sizel-jj).minCoeff(&k); /* k est relatif au segment */
k += jj;
if (minrow != ju(jj)) { /* swap the two locations */
j = ju(jj);
std::swap(ju(jj), ju(k));
jr(minrow) = jj; jr(j) = k;
std::swap(u(jj), u(k));
}
/* Reset this location to zero */
jr(minrow) = -1;
/* Start elimination */
typename FactorType::InnerIterator ki_it(m_lu, minrow);
while (ki_it && ki_it.index() < minrow) ++ki_it;
if(ki_it && ki_it.col()==minrow) fact = u(jj) / ki_it.value();
else { eigen_internal_assert(false); }
if( std::abs(fact) <= m_droptol ) {
jj++;
continue ; /* This element is been dropped */
}
/* linear combination of the current row ii and the row minrow */
++ki_it;
for (; ki_it; ++ki_it) {
prod = fact * ki_it.value();
j = ki_it.index();
jpos = jr(j);
if (j >= ii) { /* Dealing with the upper part */
if (jpos == -1) { /* Fill-in element */
int newpos = ii + sizeu;
ju(newpos) = j;
u(newpos) = - prod;
jr(j) = newpos;
sizeu++;
if (sizeu > n) { eigen_internal_assert(false);}
}
else { /* Not a fill_in element */
u(jpos) -= prod;
}
}
else { /* Dealing with the lower part */
if (jpos == -1) { /* Fill-in element */
ju(sizel) = j;
jr(j) = sizel;
u(sizel) = - prod;
sizel++;
if(sizel > n) { eigen_internal_assert(false);}
}
else {
u(jpos) -= prod;
}
}
}
/* Store the pivot element */
u(len) = fact;
ju(len) = minrow;
++len;
jj++;
} /* End While loop -- end of the elimination on the row ii*/
/* Reset the upper part of the pointer jr to zero */
for (k = 0; k <sizeu; k++){
jr(ju(ii+k)) = -1;
}
/* Sort the L-part of the row --use Quicksplit()*/
sizel = len;
len = std::min(sizel, nnzL );
typename Vector::SegmentReturnType ul(u.segment(0, len));
typename VectorXi::SegmentReturnType jul(ju.segment(0, len));
QuickSplit(ul, jul, len);
/* Store the largest m_fill elements of the L part */
m_lu.startVec(ii);
for (k = 0; k < len; k++){
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
}
/* Store the diagonal element */
if (u(ii) == Scalar(0))
u(ii) = std::sqrt(m_droptol ) * rownorm ; /* NOTE This is used to avoid a zero pivot, because we are doing an incomplete factorization */
m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
/* Sort the U-part of the row -- Use Quicksplit() */
len = 0;
for (k = 1; k < sizeu; k++) { /* First, drop any element that is below a relative tolerance */
if ( std::abs(u(ii+k)) > m_droptol * rownorm ) {
++len;
u(ii + len) = u(ii + k);
ju(ii + len) = ju(ii + k);
}
}
sizeu = len + 1; /* To take into account the diagonal element */
len = std::min(sizeu, nnzU);
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
QuickSplit(uu, juu, len);
/* Store the largest <fill> elements of the U part */
for (k = ii + 1; k < ii + len; k++){
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
}
} /* End global for-loop */
m_lu.finalize();
m_lu.makeCompressed(); /* NOTE To save the extra space */
m_factorizationIsOk = true;
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
return m_info;
}
template<typename MatrixType>
void analyzePattern(const MatrixType& amat);
template<typename MatrixType>
void factorize(const MatrixType& amat);
/**
* Compute an incomplete LU factorization with dual threshold on the matrix mat
* No pivoting is done in this version
@ -291,19 +111,15 @@ class IncompleteLUT
return *this;
}
void setDroptol(RealScalar droptol);
void setFillfactor(int fillfactor);
template<typename Rhs, typename Dest>
void _solve(const Rhs& b, Dest& x) const
{
x = m_Pinv * b;
x = m_lu.template triangularView<UnitLower>().solve(x);/* Compute L*x = P*b for x */
x = m_lu.template triangularView<Upper>().solve(x); /* Compute U * z = y for z */
x = m_lu.template triangularView<UnitLower>().solve(x);
x = m_lu.template triangularView<Upper>().solve(x);
x = m_P * x;
}
@ -315,19 +131,13 @@ class IncompleteLUT
&& "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
}
protected:
FactorType m_lu;
RealScalar m_droptol;
int m_fillfactor;
bool m_analysisIsOk;
bool m_factorizationIsOk;
bool m_isInitialized;
template <typename VectorV, typename VectorI>
int QuickSplit(VectorV &row, VectorI &ind, int ncut);
PermutationMatrix<Dynamic,Dynamic,Index> m_P; /* Fill-reducing permutation */
PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; /* Inverse permutation */
template <typename VectorV, typename VectorI>
int QuickSplit(VectorV &row, VectorI &ind, int ncut);
/** keeps off-diagonal entries; drops diagonal entries */
struct keep_diag {
inline bool operator() (const Index& row, const Index& col, const Scalar&) const
@ -335,6 +145,18 @@ protected:
return row!=col;
}
};
protected:
FactorType m_lu;
RealScalar m_droptol;
int m_fillfactor;
bool m_analysisIsOk;
bool m_factorizationIsOk;
bool m_isInitialized;
ComputationInfo m_info;
PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation
PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation
};
/**
@ -371,8 +193,9 @@ template <typename Scalar>
template <typename VectorV, typename VectorI>
int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut)
{
using std::swap;
int mid;
int n = row.size(); /* lenght of the vector */
int n = row.size(); /* length of the vector */
int first, last ;
ncut--; /* to fit the zero-based indices */
@ -386,23 +209,247 @@ int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut)
for (int j = first + 1; j <= last; j++) {
if ( std::abs(row(j)) > abskey) {
++mid;
std::swap(row(mid), row(j));
std::swap(ind(mid), ind(j));
swap(row(mid), row(j));
swap(ind(mid), ind(j));
}
}
/* Interchange for the pivot element */
std::swap(row(mid), row(first));
std::swap(ind(mid), ind(first));
swap(row(mid), row(first));
swap(ind(mid), ind(first));
if (mid > ncut) last = mid - 1;
else if (mid < ncut ) first = mid + 1;
} while (mid != ncut );
return 0; /* mid is equal to ncut */
return 0; /* mid is equal to ncut */
}
template <typename Scalar>
template<typename _MatrixType>
void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
{
// Compute the Fill-reducing permutation
SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
// Symmetrize the pattern
// FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
// on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
AtA.prune(keep_diag());
internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); // Then compute the AMD ordering...
m_Pinv = m_P.inverse(); // ... and the inverse permutation
m_analysisIsOk = true;
}
template <typename Scalar>
template<typename _MatrixType>
void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
{
using std::sqrt;
using std::swap;
using std::abs;
eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
int n = amat.cols(); // Size of the matrix
m_lu.resize(n,n);
// Declare Working vectors and variables
Vector u(n) ; // real values of the row -- maximum size is n --
VectorXi ju(n); // column position of the values in u -- maximum size is n
VectorXi jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
// Apply the fill-reducing permutation
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
SparseMatrix<Scalar,RowMajor, Index> mat;
mat = amat.twistedBy(m_Pinv);
// Initialization
jr.fill(-1);
ju.fill(0);
u.fill(0);
// number of largest elements to keep in each row:
int fill_in = static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1;
if (fill_in > n) fill_in = n;
// number of largest nonzero elements to keep in the L and the U part of the current row:
int nnzL = fill_in/2;
int nnzU = nnzL;
m_lu.reserve(n * (nnzL + nnzU + 1));
// global loop over the rows of the sparse matrix
for (int ii = 0; ii < n; ii++)
{
// 1 - copy the lower and the upper part of the row i of mat in the working vector u
int sizeu = 1; // number of nonzero elements in the upper part of the current row
int sizel = 0; // number of nonzero elements in the lower part of the current row
ju(ii) = ii;
u(ii) = 0;
jr(ii) = ii;
RealScalar rownorm = 0;
typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
for (; j_it; ++j_it)
{
int k = j_it.index();
if (k < ii)
{
// copy the lower part
ju(sizel) = k;
u(sizel) = j_it.value();
jr(k) = sizel;
++sizel;
}
else if (k == ii)
{
u(ii) = j_it.value();
}
else
{
// copy the upper part
int jpos = ii + sizeu;
ju(jpos) = k;
u(jpos) = j_it.value();
jr(k) = jpos;
++sizeu;
}
rownorm += internal::abs2(j_it.value());
}
// 2 - detect possible zero row
if(rownorm==0)
{
m_info = NumericalIssue;
return;
}
// Take the 2-norm of the current row as a relative tolerance
rownorm = sqrt(rownorm);
// 3 - eliminate the previous nonzero rows
int jj = 0;
int len = 0;
while (jj < sizel)
{
// In order to eliminate in the correct order,
// we must select first the smallest column index among ju(jj:sizel)
int k;
int minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
k += jj;
if (minrow != ju(jj))
{
// swap the two locations
int j = ju(jj);
swap(ju(jj), ju(k));
jr(minrow) = jj; jr(j) = k;
swap(u(jj), u(k));
}
// Reset this location
jr(minrow) = -1;
// Start elimination
typename FactorType::InnerIterator ki_it(m_lu, minrow);
while (ki_it && ki_it.index() < minrow) ++ki_it;
eigen_internal_assert(ki_it && ki_it.col()==minrow);
Scalar fact = u(jj) / ki_it.value();
// drop too small elements
if(abs(fact) <= m_droptol)
{
jj++;
continue;
}
// linear combination of the current row ii and the row minrow
++ki_it;
for (; ki_it; ++ki_it)
{
Scalar prod = fact * ki_it.value();
int j = ki_it.index();
int jpos = jr(j);
if (jpos == -1) // fill-in element
{
int newpos;
if (j >= ii) // dealing with the upper part
{
newpos = ii + sizeu;
sizeu++;
eigen_internal_assert(sizeu<=n);
}
else // dealing with the lower part
{
newpos = sizel;
sizel++;
eigen_internal_assert(sizel<ii);
}
ju(newpos) = j;
u(newpos) = -prod;
jr(j) = newpos;
}
else
u(jpos) -= prod;
}
// store the pivot element
u(len) = fact;
ju(len) = minrow;
++len;
jj++;
} // end of the elimination on the row ii
// reset the upper part of the pointer jr to zero
for(int k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
// 4 - partially sort and insert the elements in the m_lu matrix
// sort the L-part of the row
sizel = len;
len = (std::min)(sizel, nnzL);
typename Vector::SegmentReturnType ul(u.segment(0, sizel));
typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
QuickSplit(ul, jul, len);
// store the largest m_fill elements of the L part
m_lu.startVec(ii);
for(int k = 0; k < len; k++)
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
// store the diagonal element
// apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
if (u(ii) == Scalar(0))
u(ii) = sqrt(m_droptol) * rownorm;
m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
// sort the U-part of the row
// apply the dropping rule first
len = 0;
for(int k = 1; k < sizeu; k++)
{
if(abs(u(ii+k)) > m_droptol * rownorm )
{
++len;
u(ii + len) = u(ii + k);
ju(ii + len) = ju(ii + k);
}
}
sizeu = len + 1; // +1 to take into account the diagonal element
len = (std::min)(sizeu, nnzU);
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
QuickSplit(uu, juu, len);
// store the largest elements of the U part
for(int k = ii + 1; k < ii + len; k++)
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
}
m_lu.finalize();
m_lu.makeCompressed();
m_factorizationIsOk = true;
m_info = Success;
}
namespace internal {