mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-23 10:09:36 +08:00
clean a bit the ILUT code
This commit is contained in:
parent
ef448da57b
commit
4cc6d7aa62
@ -2,6 +2,7 @@
|
||||
#define EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
|
||||
|
||||
#include "SparseCore"
|
||||
#include "OrderingMethods"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
@ -15,6 +16,11 @@ namespace Eigen {
|
||||
* - ConjugateGradient for selfadjoint (hermitian) matrices,
|
||||
* - BiCGSTAB for general square matrices.
|
||||
*
|
||||
* These iterative solvers are associated with some preconditioners:
|
||||
* - IdentityPreconditioner - not really useful
|
||||
* - DiagonalPreconditioner - also called JAcobi preconditioner, work very well on diagonal dominant matrices.
|
||||
* - IncompleteILUT - incomplete LU factorization with dual thresholding
|
||||
*
|
||||
* Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport.
|
||||
*
|
||||
* \code
|
||||
|
@ -24,15 +24,13 @@
|
||||
|
||||
#ifndef EIGEN_INCOMPLETE_LUT_H
|
||||
#define EIGEN_INCOMPLETE_LUT_H
|
||||
#include <bench/btl/generic_bench/utils/utilities.h>
|
||||
#include <Eigen/src/OrderingMethods/Amd.h>
|
||||
|
||||
/**
|
||||
* \brief Incomplete LU factorization with dual-threshold strategy
|
||||
* During the numerical factorization, two dropping rules are used :
|
||||
* 1) any element whose magnitude is less than some tolerance is dropped.
|
||||
* 1) any element whose magnitude is less than some tolerance is dropped.
|
||||
* This tolerance is obtained by multiplying the input tolerance @p droptol
|
||||
* by the average magnitude of all the original elements in the current row.
|
||||
* by the average magnitude of all the original elements in the current row.
|
||||
* 2) After the elimination of the row, only the @p fill largest elements in
|
||||
* the L part and the @p fill largest elements in the U part are kept
|
||||
* (in addition to the diagonal element ). Note that @p fill is computed from
|
||||
@ -63,11 +61,15 @@ class IncompleteLUT
|
||||
public:
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
|
||||
|
||||
IncompleteLUT() : m_droptol(NumTraits<Scalar>::dummy_precision()),m_fillfactor(10),m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false) {}
|
||||
IncompleteLUT()
|
||||
: m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
|
||||
m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
|
||||
{}
|
||||
|
||||
template<typename MatrixType>
|
||||
IncompleteLUT(const MatrixType& mat, RealScalar droptol, int fillfactor)
|
||||
: m_droptol(droptol),m_fillfactor(fillfactor),m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
|
||||
IncompleteLUT(const MatrixType& mat, RealScalar droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
|
||||
: m_droptol(droptol),m_fillfactor(fillfactor),
|
||||
m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
|
||||
{
|
||||
eigen_assert(fillfactor != 0);
|
||||
compute(mat);
|
||||
@ -76,206 +78,24 @@ class IncompleteLUT
|
||||
Index rows() const { return m_lu.rows(); }
|
||||
|
||||
Index cols() const { return m_lu.cols(); }
|
||||
|
||||
template<typename MatrixType>
|
||||
void analyzePattern(const MatrixType& amat)
|
||||
{
|
||||
/* Compute the Fill-reducing permutation */
|
||||
SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
|
||||
SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
|
||||
SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 * mat1; /* Symmetrize the pattern */
|
||||
AtA.prune(keep_diag());
|
||||
internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); /* Then compute the AMD ordering... */
|
||||
|
||||
m_Pinv = m_P.inverse(); /* ... and the inverse permutation */
|
||||
m_analysisIsOk = true;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void factorize(const MatrixType& amat)
|
||||
{
|
||||
eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
|
||||
int n = amat.cols(); /* Size of the matrix */
|
||||
m_lu.resize(n,n);
|
||||
int fill_in; /* Number of largest elements to keep in each row */
|
||||
int nnzL, nnzU; /* Number of largest nonzero elements to keep in the L and the U part of the current row */
|
||||
/* Declare Working vectors and variables */
|
||||
int sizeu; /* number of nonzero elements in the upper part of the current row */
|
||||
int sizel; /* number of nonzero elements in the lower part of the current row */
|
||||
Vector u(n) ; /* real values of the row -- maximum size is n -- */
|
||||
VectorXi ju(n); /*column position of the values in u -- maximum size is n*/
|
||||
VectorXi jr(n); /* Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1*/
|
||||
int j, k, jj, jpos, minrow, len;
|
||||
Scalar fact, prod;
|
||||
RealScalar rownorm;
|
||||
|
||||
/* Apply the fill-reducing permutation */
|
||||
|
||||
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
||||
SparseMatrix<Scalar,RowMajor, Index> mat;
|
||||
mat = amat.twistedBy(m_Pinv);
|
||||
|
||||
/* Initialization */
|
||||
fact = 0;
|
||||
jr.fill(-1);
|
||||
ju.fill(0);
|
||||
u.fill(0);
|
||||
fill_in = static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1;
|
||||
if (fill_in > n) fill_in = n;
|
||||
nnzL = fill_in/2;
|
||||
nnzU = nnzL;
|
||||
m_lu.reserve(n * (nnzL + nnzU + 1));
|
||||
for (int ii = 0; ii < n; ii++)
|
||||
{ /* global loop over the rows of the sparse matrix */
|
||||
|
||||
/* Copy the lower and the upper part of the row i of mat in the working vector u */
|
||||
sizeu = 1;
|
||||
sizel = 0;
|
||||
ju(ii) = ii;
|
||||
u(ii) = 0;
|
||||
jr(ii) = ii;
|
||||
rownorm = 0;
|
||||
|
||||
typename FactorType::InnerIterator j_it(mat, ii); /* Iterate through the current row ii */
|
||||
for (; j_it; ++j_it)
|
||||
{
|
||||
k = j_it.index();
|
||||
if (k < ii)
|
||||
{ /* Copy the lower part */
|
||||
ju(sizel) = k;
|
||||
u(sizel) = j_it.value();
|
||||
jr(k) = sizel;
|
||||
++sizel;
|
||||
}
|
||||
else if (k == ii)
|
||||
{
|
||||
u(ii) = j_it.value();
|
||||
}
|
||||
else
|
||||
{ /* Copy the upper part */
|
||||
jpos = ii + sizeu;
|
||||
ju(jpos) = k;
|
||||
u(jpos) = j_it.value();
|
||||
jr(k) = jpos;
|
||||
++sizeu;
|
||||
}
|
||||
rownorm += internal::abs2(j_it.value());
|
||||
} /* end copy of the row */
|
||||
/* detect possible zero row */
|
||||
if (rownorm == 0) eigen_internal_assert(false);
|
||||
rownorm = std::sqrt(rownorm); /* Take the 2-norm of the current row as a relative tolerance */
|
||||
|
||||
/* Now, eliminate the previous nonzero rows */
|
||||
jj = 0; len = 0;
|
||||
while (jj < sizel)
|
||||
{ /* In order to eliminate in the correct order, we must select first the smallest column index among ju(jj:sizel) */
|
||||
|
||||
minrow = ju.segment(jj,sizel-jj).minCoeff(&k); /* k est relatif au segment */
|
||||
k += jj;
|
||||
if (minrow != ju(jj)) { /* swap the two locations */
|
||||
j = ju(jj);
|
||||
std::swap(ju(jj), ju(k));
|
||||
jr(minrow) = jj; jr(j) = k;
|
||||
std::swap(u(jj), u(k));
|
||||
}
|
||||
/* Reset this location to zero */
|
||||
jr(minrow) = -1;
|
||||
|
||||
/* Start elimination */
|
||||
typename FactorType::InnerIterator ki_it(m_lu, minrow);
|
||||
while (ki_it && ki_it.index() < minrow) ++ki_it;
|
||||
if(ki_it && ki_it.col()==minrow) fact = u(jj) / ki_it.value();
|
||||
else { eigen_internal_assert(false); }
|
||||
if( std::abs(fact) <= m_droptol ) {
|
||||
jj++;
|
||||
continue ; /* This element is been dropped */
|
||||
}
|
||||
/* linear combination of the current row ii and the row minrow */
|
||||
++ki_it;
|
||||
for (; ki_it; ++ki_it) {
|
||||
prod = fact * ki_it.value();
|
||||
j = ki_it.index();
|
||||
jpos = jr(j);
|
||||
if (j >= ii) { /* Dealing with the upper part */
|
||||
if (jpos == -1) { /* Fill-in element */
|
||||
int newpos = ii + sizeu;
|
||||
ju(newpos) = j;
|
||||
u(newpos) = - prod;
|
||||
jr(j) = newpos;
|
||||
sizeu++;
|
||||
if (sizeu > n) { eigen_internal_assert(false);}
|
||||
}
|
||||
else { /* Not a fill_in element */
|
||||
u(jpos) -= prod;
|
||||
}
|
||||
}
|
||||
else { /* Dealing with the lower part */
|
||||
if (jpos == -1) { /* Fill-in element */
|
||||
ju(sizel) = j;
|
||||
jr(j) = sizel;
|
||||
u(sizel) = - prod;
|
||||
sizel++;
|
||||
if(sizel > n) { eigen_internal_assert(false);}
|
||||
}
|
||||
else {
|
||||
u(jpos) -= prod;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Store the pivot element */
|
||||
u(len) = fact;
|
||||
ju(len) = minrow;
|
||||
++len;
|
||||
|
||||
jj++;
|
||||
} /* End While loop -- end of the elimination on the row ii*/
|
||||
/* Reset the upper part of the pointer jr to zero */
|
||||
for (k = 0; k <sizeu; k++){
|
||||
jr(ju(ii+k)) = -1;
|
||||
}
|
||||
/* Sort the L-part of the row --use Quicksplit()*/
|
||||
sizel = len;
|
||||
len = std::min(sizel, nnzL );
|
||||
typename Vector::SegmentReturnType ul(u.segment(0, len));
|
||||
typename VectorXi::SegmentReturnType jul(ju.segment(0, len));
|
||||
QuickSplit(ul, jul, len);
|
||||
|
||||
|
||||
/* Store the largest m_fill elements of the L part */
|
||||
m_lu.startVec(ii);
|
||||
for (k = 0; k < len; k++){
|
||||
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
|
||||
}
|
||||
|
||||
/* Store the diagonal element */
|
||||
if (u(ii) == Scalar(0))
|
||||
u(ii) = std::sqrt(m_droptol ) * rownorm ; /* NOTE This is used to avoid a zero pivot, because we are doing an incomplete factorization */
|
||||
m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
|
||||
/* Sort the U-part of the row -- Use Quicksplit() */
|
||||
len = 0;
|
||||
for (k = 1; k < sizeu; k++) { /* First, drop any element that is below a relative tolerance */
|
||||
if ( std::abs(u(ii+k)) > m_droptol * rownorm ) {
|
||||
++len;
|
||||
u(ii + len) = u(ii + k);
|
||||
ju(ii + len) = ju(ii + k);
|
||||
}
|
||||
}
|
||||
sizeu = len + 1; /* To take into account the diagonal element */
|
||||
len = std::min(sizeu, nnzU);
|
||||
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
|
||||
typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
|
||||
QuickSplit(uu, juu, len);
|
||||
/* Store the largest <fill> elements of the U part */
|
||||
for (k = ii + 1; k < ii + len; k++){
|
||||
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
|
||||
}
|
||||
} /* End global for-loop */
|
||||
m_lu.finalize();
|
||||
m_lu.makeCompressed(); /* NOTE To save the extra space */
|
||||
|
||||
m_factorizationIsOk = true;
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful,
|
||||
* \c NumericalIssue if the matrix.appears to be negative.
|
||||
*/
|
||||
ComputationInfo info() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
|
||||
return m_info;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
void analyzePattern(const MatrixType& amat);
|
||||
|
||||
template<typename MatrixType>
|
||||
void factorize(const MatrixType& amat);
|
||||
|
||||
/**
|
||||
* Compute an incomplete LU factorization with dual threshold on the matrix mat
|
||||
* No pivoting is done in this version
|
||||
@ -291,19 +111,15 @@ class IncompleteLUT
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
void setDroptol(RealScalar droptol);
|
||||
void setFillfactor(int fillfactor);
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename Rhs, typename Dest>
|
||||
void _solve(const Rhs& b, Dest& x) const
|
||||
{
|
||||
x = m_Pinv * b;
|
||||
x = m_lu.template triangularView<UnitLower>().solve(x);/* Compute L*x = P*b for x */
|
||||
x = m_lu.template triangularView<Upper>().solve(x); /* Compute U * z = y for z */
|
||||
x = m_lu.template triangularView<UnitLower>().solve(x);
|
||||
x = m_lu.template triangularView<Upper>().solve(x);
|
||||
x = m_P * x;
|
||||
}
|
||||
|
||||
@ -315,19 +131,13 @@ class IncompleteLUT
|
||||
&& "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
|
||||
protected:
|
||||
FactorType m_lu;
|
||||
RealScalar m_droptol;
|
||||
int m_fillfactor;
|
||||
bool m_analysisIsOk;
|
||||
bool m_factorizationIsOk;
|
||||
bool m_isInitialized;
|
||||
template <typename VectorV, typename VectorI>
|
||||
int QuickSplit(VectorV &row, VectorI &ind, int ncut);
|
||||
PermutationMatrix<Dynamic,Dynamic,Index> m_P; /* Fill-reducing permutation */
|
||||
PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; /* Inverse permutation */
|
||||
|
||||
|
||||
template <typename VectorV, typename VectorI>
|
||||
int QuickSplit(VectorV &row, VectorI &ind, int ncut);
|
||||
|
||||
|
||||
/** keeps off-diagonal entries; drops diagonal entries */
|
||||
struct keep_diag {
|
||||
inline bool operator() (const Index& row, const Index& col, const Scalar&) const
|
||||
@ -335,6 +145,18 @@ protected:
|
||||
return row!=col;
|
||||
}
|
||||
};
|
||||
|
||||
protected:
|
||||
|
||||
FactorType m_lu;
|
||||
RealScalar m_droptol;
|
||||
int m_fillfactor;
|
||||
bool m_analysisIsOk;
|
||||
bool m_factorizationIsOk;
|
||||
bool m_isInitialized;
|
||||
ComputationInfo m_info;
|
||||
PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation
|
||||
PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation
|
||||
};
|
||||
|
||||
/**
|
||||
@ -371,8 +193,9 @@ template <typename Scalar>
|
||||
template <typename VectorV, typename VectorI>
|
||||
int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut)
|
||||
{
|
||||
using std::swap;
|
||||
int mid;
|
||||
int n = row.size(); /* lenght of the vector */
|
||||
int n = row.size(); /* length of the vector */
|
||||
int first, last ;
|
||||
|
||||
ncut--; /* to fit the zero-based indices */
|
||||
@ -386,23 +209,247 @@ int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut)
|
||||
for (int j = first + 1; j <= last; j++) {
|
||||
if ( std::abs(row(j)) > abskey) {
|
||||
++mid;
|
||||
std::swap(row(mid), row(j));
|
||||
std::swap(ind(mid), ind(j));
|
||||
swap(row(mid), row(j));
|
||||
swap(ind(mid), ind(j));
|
||||
}
|
||||
}
|
||||
/* Interchange for the pivot element */
|
||||
std::swap(row(mid), row(first));
|
||||
std::swap(ind(mid), ind(first));
|
||||
swap(row(mid), row(first));
|
||||
swap(ind(mid), ind(first));
|
||||
|
||||
if (mid > ncut) last = mid - 1;
|
||||
else if (mid < ncut ) first = mid + 1;
|
||||
} while (mid != ncut );
|
||||
|
||||
|
||||
return 0; /* mid is equal to ncut */
|
||||
|
||||
return 0; /* mid is equal to ncut */
|
||||
}
|
||||
|
||||
template <typename Scalar>
|
||||
template<typename _MatrixType>
|
||||
void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
|
||||
{
|
||||
// Compute the Fill-reducing permutation
|
||||
SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
|
||||
SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
|
||||
// Symmetrize the pattern
|
||||
// FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
|
||||
// on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
|
||||
SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
|
||||
AtA.prune(keep_diag());
|
||||
internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); // Then compute the AMD ordering...
|
||||
|
||||
m_Pinv = m_P.inverse(); // ... and the inverse permutation
|
||||
|
||||
m_analysisIsOk = true;
|
||||
}
|
||||
|
||||
template <typename Scalar>
|
||||
template<typename _MatrixType>
|
||||
void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::swap;
|
||||
using std::abs;
|
||||
|
||||
eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
|
||||
int n = amat.cols(); // Size of the matrix
|
||||
m_lu.resize(n,n);
|
||||
// Declare Working vectors and variables
|
||||
Vector u(n) ; // real values of the row -- maximum size is n --
|
||||
VectorXi ju(n); // column position of the values in u -- maximum size is n
|
||||
VectorXi jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
|
||||
|
||||
// Apply the fill-reducing permutation
|
||||
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
||||
SparseMatrix<Scalar,RowMajor, Index> mat;
|
||||
mat = amat.twistedBy(m_Pinv);
|
||||
|
||||
// Initialization
|
||||
jr.fill(-1);
|
||||
ju.fill(0);
|
||||
u.fill(0);
|
||||
|
||||
// number of largest elements to keep in each row:
|
||||
int fill_in = static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1;
|
||||
if (fill_in > n) fill_in = n;
|
||||
|
||||
// number of largest nonzero elements to keep in the L and the U part of the current row:
|
||||
int nnzL = fill_in/2;
|
||||
int nnzU = nnzL;
|
||||
m_lu.reserve(n * (nnzL + nnzU + 1));
|
||||
|
||||
// global loop over the rows of the sparse matrix
|
||||
for (int ii = 0; ii < n; ii++)
|
||||
{
|
||||
// 1 - copy the lower and the upper part of the row i of mat in the working vector u
|
||||
|
||||
int sizeu = 1; // number of nonzero elements in the upper part of the current row
|
||||
int sizel = 0; // number of nonzero elements in the lower part of the current row
|
||||
ju(ii) = ii;
|
||||
u(ii) = 0;
|
||||
jr(ii) = ii;
|
||||
RealScalar rownorm = 0;
|
||||
|
||||
typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
|
||||
for (; j_it; ++j_it)
|
||||
{
|
||||
int k = j_it.index();
|
||||
if (k < ii)
|
||||
{
|
||||
// copy the lower part
|
||||
ju(sizel) = k;
|
||||
u(sizel) = j_it.value();
|
||||
jr(k) = sizel;
|
||||
++sizel;
|
||||
}
|
||||
else if (k == ii)
|
||||
{
|
||||
u(ii) = j_it.value();
|
||||
}
|
||||
else
|
||||
{
|
||||
// copy the upper part
|
||||
int jpos = ii + sizeu;
|
||||
ju(jpos) = k;
|
||||
u(jpos) = j_it.value();
|
||||
jr(k) = jpos;
|
||||
++sizeu;
|
||||
}
|
||||
rownorm += internal::abs2(j_it.value());
|
||||
}
|
||||
|
||||
// 2 - detect possible zero row
|
||||
if(rownorm==0)
|
||||
{
|
||||
m_info = NumericalIssue;
|
||||
return;
|
||||
}
|
||||
// Take the 2-norm of the current row as a relative tolerance
|
||||
rownorm = sqrt(rownorm);
|
||||
|
||||
// 3 - eliminate the previous nonzero rows
|
||||
int jj = 0;
|
||||
int len = 0;
|
||||
while (jj < sizel)
|
||||
{
|
||||
// In order to eliminate in the correct order,
|
||||
// we must select first the smallest column index among ju(jj:sizel)
|
||||
int k;
|
||||
int minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
|
||||
k += jj;
|
||||
if (minrow != ju(jj))
|
||||
{
|
||||
// swap the two locations
|
||||
int j = ju(jj);
|
||||
swap(ju(jj), ju(k));
|
||||
jr(minrow) = jj; jr(j) = k;
|
||||
swap(u(jj), u(k));
|
||||
}
|
||||
// Reset this location
|
||||
jr(minrow) = -1;
|
||||
|
||||
// Start elimination
|
||||
typename FactorType::InnerIterator ki_it(m_lu, minrow);
|
||||
while (ki_it && ki_it.index() < minrow) ++ki_it;
|
||||
eigen_internal_assert(ki_it && ki_it.col()==minrow);
|
||||
Scalar fact = u(jj) / ki_it.value();
|
||||
|
||||
// drop too small elements
|
||||
if(abs(fact) <= m_droptol)
|
||||
{
|
||||
jj++;
|
||||
continue;
|
||||
}
|
||||
|
||||
// linear combination of the current row ii and the row minrow
|
||||
++ki_it;
|
||||
for (; ki_it; ++ki_it)
|
||||
{
|
||||
Scalar prod = fact * ki_it.value();
|
||||
int j = ki_it.index();
|
||||
int jpos = jr(j);
|
||||
if (jpos == -1) // fill-in element
|
||||
{
|
||||
int newpos;
|
||||
if (j >= ii) // dealing with the upper part
|
||||
{
|
||||
newpos = ii + sizeu;
|
||||
sizeu++;
|
||||
eigen_internal_assert(sizeu<=n);
|
||||
}
|
||||
else // dealing with the lower part
|
||||
{
|
||||
newpos = sizel;
|
||||
sizel++;
|
||||
eigen_internal_assert(sizel<ii);
|
||||
}
|
||||
ju(newpos) = j;
|
||||
u(newpos) = -prod;
|
||||
jr(j) = newpos;
|
||||
}
|
||||
else
|
||||
u(jpos) -= prod;
|
||||
}
|
||||
// store the pivot element
|
||||
u(len) = fact;
|
||||
ju(len) = minrow;
|
||||
++len;
|
||||
|
||||
jj++;
|
||||
} // end of the elimination on the row ii
|
||||
|
||||
// reset the upper part of the pointer jr to zero
|
||||
for(int k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
|
||||
|
||||
// 4 - partially sort and insert the elements in the m_lu matrix
|
||||
|
||||
// sort the L-part of the row
|
||||
sizel = len;
|
||||
len = (std::min)(sizel, nnzL);
|
||||
typename Vector::SegmentReturnType ul(u.segment(0, sizel));
|
||||
typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
|
||||
QuickSplit(ul, jul, len);
|
||||
|
||||
// store the largest m_fill elements of the L part
|
||||
m_lu.startVec(ii);
|
||||
for(int k = 0; k < len; k++)
|
||||
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
|
||||
|
||||
// store the diagonal element
|
||||
// apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
|
||||
if (u(ii) == Scalar(0))
|
||||
u(ii) = sqrt(m_droptol) * rownorm;
|
||||
m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
|
||||
|
||||
// sort the U-part of the row
|
||||
// apply the dropping rule first
|
||||
len = 0;
|
||||
for(int k = 1; k < sizeu; k++)
|
||||
{
|
||||
if(abs(u(ii+k)) > m_droptol * rownorm )
|
||||
{
|
||||
++len;
|
||||
u(ii + len) = u(ii + k);
|
||||
ju(ii + len) = ju(ii + k);
|
||||
}
|
||||
}
|
||||
sizeu = len + 1; // +1 to take into account the diagonal element
|
||||
len = (std::min)(sizeu, nnzU);
|
||||
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
|
||||
typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
|
||||
QuickSplit(uu, juu, len);
|
||||
|
||||
// store the largest elements of the U part
|
||||
for(int k = ii + 1; k < ii + len; k++)
|
||||
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
|
||||
}
|
||||
|
||||
m_lu.finalize();
|
||||
m_lu.makeCompressed();
|
||||
|
||||
m_factorizationIsOk = true;
|
||||
m_info = Success;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user