Add missing minpack copyrights/license.

Fix LM header files and credits original MINPACK authors.
Move minimizeOneStep code into its own file to get it more properly credited.
This commit is contained in:
Gael Guennebaud 2012-12-08 18:17:18 +01:00
parent d85253ccf4
commit 4cdcb6d793
7 changed files with 430 additions and 307 deletions

View File

@ -34,12 +34,13 @@
#ifndef EIGEN_PARSED_BY_DOXYGEN
#include "src/LevenbergMarquardt/LMqrsolv.h"
#include "src/LevenbergMarquardt/covar.h"
#include "src/LevenbergMarquardt/LMcovar.h"
#include "src/LevenbergMarquardt/LMpar.h"
#endif
#include "src/LevenbergMarquardt/LevenbergMarquardt.h"
#include "src/LevenbergMarquardt/LMonestep.h"
#endif // EIGEN_LEVENBERGMARQUARDT_MODULE

View File

@ -0,0 +1,52 @@
Minpack Copyright Notice (1999) University of Chicago. All rights reserved
Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.
3. The end-user documentation included with the
redistribution, if any, must include the following
acknowledgment:
"This product includes software developed by the
University of Chicago, as Operator of Argonne National
Laboratory.
Alternately, this acknowledgment may appear in the software
itself, if and wherever such third-party acknowledgments
normally appear.
4. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
BE CORRECTED.
5. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
(INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGES.

View File

@ -1,3 +1,17 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This code initially comes from MINPACK whose original authors are:
// Copyright Jorge More - Argonne National Laboratory
// Copyright Burt Garbow - Argonne National Laboratory
// Copyright Ken Hillstrom - Argonne National Laboratory
//
// This Source Code Form is subject to the terms of the Minpack license
// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
#ifndef EIGEN_LMCOVAR_H
#define EIGEN_LMCOVAR_H
namespace Eigen {
namespace internal {
@ -67,3 +81,5 @@ void covar(
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_LMCOVAR_H

View File

@ -0,0 +1,179 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
//
// This code initially comes from MINPACK whose original authors are:
// Copyright Jorge More - Argonne National Laboratory
// Copyright Burt Garbow - Argonne National Laboratory
// Copyright Ken Hillstrom - Argonne National Laboratory
//
// This Source Code Form is subject to the terms of the Minpack license
// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
#ifndef EIGEN_LMONESTEP_H
#define EIGEN_LMONESTEP_H
namespace Eigen {
template<typename FunctorType>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x)
{
typedef typename FunctorType::JacobianType JacobianType;
using std::abs;
using std::sqrt;
RealScalar temp, temp1,temp2;
RealScalar ratio;
RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered;
assert(x.size()==n); // check the caller is not cheating us
temp = 0.0; xnorm = 0.0;
/* calculate the jacobian matrix. */
Index df_ret = m_functor.df(x, m_fjac);
if (df_ret<0)
return LevenbergMarquardtSpace::UserAsked;
if (df_ret>0)
// numerical diff, we evaluated the function df_ret times
m_nfev += df_ret;
else m_njev++;
/* compute the qr factorization of the jacobian. */
for (int j = 0; j < x.size(); ++j)
m_wa2(j) = m_fjac.col(j).norm();
//FIXME Implement bluenorm for sparse vectors
// m_wa2 = m_fjac.colwise().blueNorm();
QRSolver qrfac(m_fjac); //FIXME Check if the QR decomposition succeed
// Make a copy of the first factor with the associated permutation
JacobianType rfactor;
rfactor = qrfac.matrixQR();
m_permutation = (qrfac.colsPermutation());
/* on the first iteration and if external scaling is not used, scale according */
/* to the norms of the columns of the initial jacobian. */
if (m_iter == 1) {
if (!m_useExternalScaling)
for (Index j = 0; j < n; ++j)
m_diag[j] = (m_wa2[j]==0.)? 1. : m_wa2[j];
/* on the first iteration, calculate the norm of the scaled x */
/* and initialize the step bound m_delta. */
xnorm = m_diag.cwiseProduct(x).stableNorm();
m_delta = m_factor * xnorm;
if (m_delta == 0.)
m_delta = m_factor;
}
/* form (q transpose)*m_fvec and store the first n components in */
/* m_qtf. */
m_wa4 = m_fvec;
m_wa4 = qrfac.matrixQ().adjoint() * m_fvec;
m_qtf = m_wa4.head(n);
/* compute the norm of the scaled gradient. */
m_gnorm = 0.;
if (m_fnorm != 0.)
for (Index j = 0; j < n; ++j)
if (m_wa2[m_permutation.indices()[j]] != 0.)
m_gnorm = (std::max)(m_gnorm, abs( rfactor.col(j).head(j+1).dot(m_qtf.head(j+1)/m_fnorm) / m_wa2[m_permutation.indices()[j]]));
/* test for convergence of the gradient norm. */
if (m_gnorm <= m_gtol)
return LevenbergMarquardtSpace::CosinusTooSmall;
/* rescale if necessary. */
if (!m_useExternalScaling)
m_diag = m_diag.cwiseMax(m_wa2);
do {
/* determine the levenberg-marquardt parameter. */
internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1);
/* store the direction p and x + p. calculate the norm of p. */
m_wa1 = -m_wa1;
m_wa2 = x + m_wa1;
pnorm = m_diag.cwiseProduct(m_wa1).stableNorm();
/* on the first iteration, adjust the initial step bound. */
if (m_iter == 1)
m_delta = (std::min)(m_delta,pnorm);
/* evaluate the function at x + p and calculate its norm. */
if ( m_functor(m_wa2, m_wa4) < 0)
return LevenbergMarquardtSpace::UserAsked;
++m_nfev;
fnorm1 = m_wa4.stableNorm();
/* compute the scaled actual reduction. */
actred = -1.;
if (Scalar(.1) * fnorm1 < m_fnorm)
actred = 1. - internal::abs2(fnorm1 / m_fnorm);
/* compute the scaled predicted reduction and */
/* the scaled directional derivative. */
m_wa3 = rfactor.template triangularView<Upper>() * (m_permutation.inverse() *m_wa1);
temp1 = internal::abs2(m_wa3.stableNorm() / m_fnorm);
temp2 = internal::abs2(sqrt(m_par) * pnorm / m_fnorm);
prered = temp1 + temp2 / Scalar(.5);
dirder = -(temp1 + temp2);
/* compute the ratio of the actual to the predicted */
/* reduction. */
ratio = 0.;
if (prered != 0.)
ratio = actred / prered;
/* update the step bound. */
if (ratio <= Scalar(.25)) {
if (actred >= 0.)
temp = RealScalar(.5);
if (actred < 0.)
temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred);
if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1))
temp = Scalar(.1);
/* Computing MIN */
m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1));
m_par /= temp;
} else if (!(m_par != 0. && ratio < RealScalar(.75))) {
m_delta = pnorm / RealScalar(.5);
m_par = RealScalar(.5) * m_par;
}
/* test for successful iteration. */
if (ratio >= RealScalar(1e-4)) {
/* successful iteration. update x, m_fvec, and their norms. */
x = m_wa2;
m_wa2 = m_diag.cwiseProduct(x);
m_fvec = m_wa4;
xnorm = m_wa2.stableNorm();
m_fnorm = fnorm1;
++m_iter;
}
/* tests for convergence. */
if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm)
return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.)
return LevenbergMarquardtSpace::RelativeReductionTooSmall;
if (m_delta <= m_xtol * xnorm)
return LevenbergMarquardtSpace::RelativeErrorTooSmall;
/* tests for termination and stringent tolerances. */
if (m_nfev >= m_maxfev)
return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
return LevenbergMarquardtSpace::FtolTooSmall;
if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm)
return LevenbergMarquardtSpace::XtolTooSmall;
if (m_gnorm <= NumTraits<Scalar>::epsilon())
return LevenbergMarquardtSpace::GtolTooSmall;
} while (ratio < Scalar(1e-4));
return LevenbergMarquardtSpace::Running;
}
} // end namespace Eigen
#endif // EIGEN_LMONESTEP_H

View File

@ -0,0 +1,160 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This code initially comes from MINPACK whose original authors are:
// Copyright Jorge More - Argonne National Laboratory
// Copyright Burt Garbow - Argonne National Laboratory
// Copyright Ken Hillstrom - Argonne National Laboratory
//
// This Source Code Form is subject to the terms of the Minpack license
// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
#ifndef EIGEN_LMPAR_H
#define EIGEN_LMPAR_H
namespace Eigen {
namespace internal {
template <typename QRSolver, typename VectorType>
void lmpar2(
const QRSolver &qr,
const VectorType &diag,
const VectorType &qtb,
typename VectorType::Scalar m_delta,
typename VectorType::Scalar &par,
VectorType &x)
{
using std::sqrt;
using std::abs;
typedef typename QRSolver::MatrixType MatrixType;
typedef typename QRSolver::Scalar Scalar;
typedef typename QRSolver::Index Index;
/* Local variables */
Index j;
Scalar fp;
Scalar parc, parl;
Index iter;
Scalar temp, paru;
Scalar gnorm;
Scalar dxnorm;
/* Function Body */
const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
const Index n = qr.matrixQR().cols();
assert(n==diag.size());
assert(n==qtb.size());
VectorType wa1, wa2;
/* compute and store in x the gauss-newton direction. if the */
/* jacobian is rank-deficient, obtain a least squares solution. */
// const Index rank = qr.nonzeroPivots(); // exactly double(0.)
const Index rank = qr.rank(); // use a threshold
wa1 = qtb;
wa1.tail(n-rank).setZero();
//FIXME There is no solve in place for sparse triangularView
//qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank));
wa1.head(rank) = qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(qtb.head(rank));
x = qr.colsPermutation()*wa1;
/* initialize the iteration counter. */
/* evaluate the function at the origin, and test */
/* for acceptance of the gauss-newton direction. */
iter = 0;
wa2 = diag.cwiseProduct(x);
dxnorm = wa2.blueNorm();
fp = dxnorm - m_delta;
if (fp <= Scalar(0.1) * m_delta) {
par = 0;
return;
}
/* if the jacobian is not rank deficient, the newton */
/* step provides a lower bound, parl, for the zero of */
/* the function. otherwise set this bound to zero. */
parl = 0.;
if (rank==n) {
wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2)/dxnorm;
qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
temp = wa1.blueNorm();
parl = fp / m_delta / temp / temp;
}
/* calculate an upper bound, paru, for the zero of the function. */
for (j = 0; j < n; ++j)
wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
gnorm = wa1.stableNorm();
paru = gnorm / m_delta;
if (paru == 0.)
paru = dwarf / (std::min)(m_delta,Scalar(0.1));
/* if the input par lies outside of the interval (parl,paru), */
/* set par to the closer endpoint. */
par = (std::max)(par,parl);
par = (std::min)(par,paru);
if (par == 0.)
par = gnorm / dxnorm;
/* beginning of an iteration. */
MatrixType s;
s = qr.matrixQR();
while (true) {
++iter;
/* evaluate the function at the current value of par. */
if (par == 0.)
par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
wa1 = sqrt(par)* diag;
VectorType sdiag(n);
lmqrsolv(s, qr.colsPermutation(), wa1, qtb, x, sdiag);
wa2 = diag.cwiseProduct(x);
dxnorm = wa2.blueNorm();
temp = fp;
fp = dxnorm - m_delta;
/* if the function is small enough, accept the current value */
/* of par. also test for the exceptional cases where parl */
/* is zero or the number of iterations has reached 10. */
if (abs(fp) <= Scalar(0.1) * m_delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
break;
/* compute the newton correction. */
wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
// we could almost use this here, but the diagonal is outside qr, in sdiag[]
// qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
for (j = 0; j < n; ++j) {
wa1[j] /= sdiag[j];
temp = wa1[j];
for (Index i = j+1; i < n; ++i)
wa1[i] -= s.coeff(i,j) * temp;
}
temp = wa1.blueNorm();
parc = fp / m_delta / temp / temp;
/* depending on the sign of the function, update parl or paru. */
if (fp > 0.)
parl = (std::max)(parl,par);
if (fp < 0.)
paru = (std::min)(paru,par);
/* compute an improved estimate for par. */
par = (std::max)(parl,par+parc);
}
if (iter == 0)
par = 0.;
return;
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_LMPAR_H

View File

@ -2,13 +2,19 @@
// for linear algebra.
//
// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// This code initially comes from MINPACK whose original authors are:
// Copyright Jorge More - Argonne National Laboratory
// Copyright Burt Garbow - Argonne National Laboratory
// Copyright Ken Hillstrom - Argonne National Laboratory
//
// This Source Code Form is subject to the terms of the Minpack license
// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
#ifndef EIGEN_LMQRSOLV_H
#define EIGEN_LMQRSOLV_H
namespace Eigen {
namespace internal {
@ -179,4 +185,5 @@ void lmqrsolv(
} // end namespace internal
} // end namespace Eigen
#endif
#endif // EIGEN_LMQRSOLV_H

View File

@ -1,12 +1,17 @@
// -*- coding: utf-8
// vim: set fileencoding=utf-8
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
//
// The algorithm of this class initially comes from MINPACK whose original authors are:
// Copyright Jorge More - Argonne National Laboratory
// Copyright Burt Garbow - Argonne National Laboratory
// Copyright Ken Hillstrom - Argonne National Laboratory
//
// This Source Code Form is subject to the terms of the Minpack license
// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
@ -282,163 +287,6 @@ LevenbergMarquardt<FunctorType>::minimizeInit(FVectorType &x)
return LevenbergMarquardtSpace::NotStarted;
}
template<typename FunctorType>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x)
{
typedef typename FunctorType::JacobianType JacobianType;
using std::abs;
using std::sqrt;
RealScalar temp, temp1,temp2;
RealScalar ratio;
RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered;
assert(x.size()==n); // check the caller is not cheating us
temp = 0.0; xnorm = 0.0;
/* calculate the jacobian matrix. */
Index df_ret = m_functor.df(x, m_fjac);
if (df_ret<0)
return LevenbergMarquardtSpace::UserAsked;
if (df_ret>0)
// numerical diff, we evaluated the function df_ret times
m_nfev += df_ret;
else m_njev++;
/* compute the qr factorization of the jacobian. */
for (int j = 0; j < x.size(); ++j)
m_wa2(j) = m_fjac.col(j).norm();
//FIXME Implement bluenorm for sparse vectors
// m_wa2 = m_fjac.colwise().blueNorm();
QRSolver qrfac(m_fjac); //FIXME Check if the QR decomposition succeed
// Make a copy of the first factor with the associated permutation
JacobianType rfactor;
rfactor = qrfac.matrixQR();
m_permutation = (qrfac.colsPermutation());
/* on the first iteration and if external scaling is not used, scale according */
/* to the norms of the columns of the initial jacobian. */
if (m_iter == 1) {
if (!m_useExternalScaling)
for (Index j = 0; j < n; ++j)
m_diag[j] = (m_wa2[j]==0.)? 1. : m_wa2[j];
/* on the first iteration, calculate the norm of the scaled x */
/* and initialize the step bound m_delta. */
xnorm = m_diag.cwiseProduct(x).stableNorm();
m_delta = m_factor * xnorm;
if (m_delta == 0.)
m_delta = m_factor;
}
/* form (q transpose)*m_fvec and store the first n components in */
/* m_qtf. */
m_wa4 = m_fvec;
m_wa4 = qrfac.matrixQ().adjoint() * m_fvec;
m_qtf = m_wa4.head(n);
/* compute the norm of the scaled gradient. */
m_gnorm = 0.;
if (m_fnorm != 0.)
for (Index j = 0; j < n; ++j)
if (m_wa2[m_permutation.indices()[j]] != 0.)
m_gnorm = (std::max)(m_gnorm, abs( rfactor.col(j).head(j+1).dot(m_qtf.head(j+1)/m_fnorm) / m_wa2[m_permutation.indices()[j]]));
/* test for convergence of the gradient norm. */
if (m_gnorm <= m_gtol)
return LevenbergMarquardtSpace::CosinusTooSmall;
/* rescale if necessary. */
if (!m_useExternalScaling)
m_diag = m_diag.cwiseMax(m_wa2);
do {
/* determine the levenberg-marquardt parameter. */
internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1);
/* store the direction p and x + p. calculate the norm of p. */
m_wa1 = -m_wa1;
m_wa2 = x + m_wa1;
pnorm = m_diag.cwiseProduct(m_wa1).stableNorm();
/* on the first iteration, adjust the initial step bound. */
if (m_iter == 1)
m_delta = (std::min)(m_delta,pnorm);
/* evaluate the function at x + p and calculate its norm. */
if ( m_functor(m_wa2, m_wa4) < 0)
return LevenbergMarquardtSpace::UserAsked;
++m_nfev;
fnorm1 = m_wa4.stableNorm();
/* compute the scaled actual reduction. */
actred = -1.;
if (Scalar(.1) * fnorm1 < m_fnorm)
actred = 1. - internal::abs2(fnorm1 / m_fnorm);
/* compute the scaled predicted reduction and */
/* the scaled directional derivative. */
m_wa3 = rfactor.template triangularView<Upper>() * (m_permutation.inverse() *m_wa1);
temp1 = internal::abs2(m_wa3.stableNorm() / m_fnorm);
temp2 = internal::abs2(sqrt(m_par) * pnorm / m_fnorm);
prered = temp1 + temp2 / Scalar(.5);
dirder = -(temp1 + temp2);
/* compute the ratio of the actual to the predicted */
/* reduction. */
ratio = 0.;
if (prered != 0.)
ratio = actred / prered;
/* update the step bound. */
if (ratio <= Scalar(.25)) {
if (actred >= 0.)
temp = RealScalar(.5);
if (actred < 0.)
temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred);
if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1))
temp = Scalar(.1);
/* Computing MIN */
m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1));
m_par /= temp;
} else if (!(m_par != 0. && ratio < RealScalar(.75))) {
m_delta = pnorm / RealScalar(.5);
m_par = RealScalar(.5) * m_par;
}
/* test for successful iteration. */
if (ratio >= RealScalar(1e-4)) {
/* successful iteration. update x, m_fvec, and their norms. */
x = m_wa2;
m_wa2 = m_diag.cwiseProduct(x);
m_fvec = m_wa4;
xnorm = m_wa2.stableNorm();
m_fnorm = fnorm1;
++m_iter;
}
/* tests for convergence. */
if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm)
return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.)
return LevenbergMarquardtSpace::RelativeReductionTooSmall;
if (m_delta <= m_xtol * xnorm)
return LevenbergMarquardtSpace::RelativeErrorTooSmall;
/* tests for termination and stringent tolerances. */
if (m_nfev >= m_maxfev)
return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
return LevenbergMarquardtSpace::FtolTooSmall;
if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm)
return LevenbergMarquardtSpace::XtolTooSmall;
if (m_gnorm <= NumTraits<Scalar>::epsilon())
return LevenbergMarquardtSpace::GtolTooSmall;
} while (ratio < Scalar(1e-4));
return LevenbergMarquardtSpace::Running;
}
template<typename FunctorType>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType>::lmder1(
@ -491,146 +339,6 @@ LevenbergMarquardt<FunctorType>::lmdif1(
return info;
}
namespace internal {
template <typename QRSolver, typename VectorType>
void lmpar2(
const QRSolver &qr,
const VectorType &diag,
const VectorType &qtb,
typename VectorType::Scalar m_delta,
typename VectorType::Scalar &par,
VectorType &x)
{
using std::sqrt;
using std::abs;
typedef typename QRSolver::MatrixType MatrixType;
typedef typename QRSolver::Scalar Scalar;
typedef typename QRSolver::Index Index;
/* Local variables */
Index j;
Scalar fp;
Scalar parc, parl;
Index iter;
Scalar temp, paru;
Scalar gnorm;
Scalar dxnorm;
/* Function Body */
const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
const Index n = qr.matrixQR().cols();
assert(n==diag.size());
assert(n==qtb.size());
VectorType wa1, wa2;
/* compute and store in x the gauss-newton direction. if the */
/* jacobian is rank-deficient, obtain a least squares solution. */
// const Index rank = qr.nonzeroPivots(); // exactly double(0.)
const Index rank = qr.rank(); // use a threshold
wa1 = qtb;
wa1.tail(n-rank).setZero();
//FIXME There is no solve in place for sparse triangularView
//qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank));
wa1.head(rank) = qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(qtb.head(rank));
x = qr.colsPermutation()*wa1;
/* initialize the iteration counter. */
/* evaluate the function at the origin, and test */
/* for acceptance of the gauss-newton direction. */
iter = 0;
wa2 = diag.cwiseProduct(x);
dxnorm = wa2.blueNorm();
fp = dxnorm - m_delta;
if (fp <= Scalar(0.1) * m_delta) {
par = 0;
return;
}
/* if the jacobian is not rank deficient, the newton */
/* step provides a lower bound, parl, for the zero of */
/* the function. otherwise set this bound to zero. */
parl = 0.;
if (rank==n) {
wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2)/dxnorm;
qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
temp = wa1.blueNorm();
parl = fp / m_delta / temp / temp;
}
/* calculate an upper bound, paru, for the zero of the function. */
for (j = 0; j < n; ++j)
wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
gnorm = wa1.stableNorm();
paru = gnorm / m_delta;
if (paru == 0.)
paru = dwarf / (std::min)(m_delta,Scalar(0.1));
/* if the input par lies outside of the interval (parl,paru), */
/* set par to the closer endpoint. */
par = (std::max)(par,parl);
par = (std::min)(par,paru);
if (par == 0.)
par = gnorm / dxnorm;
/* beginning of an iteration. */
MatrixType s;
s = qr.matrixQR();
while (true) {
++iter;
/* evaluate the function at the current value of par. */
if (par == 0.)
par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
wa1 = sqrt(par)* diag;
VectorType sdiag(n);
lmqrsolv(s, qr.colsPermutation(), wa1, qtb, x, sdiag);
wa2 = diag.cwiseProduct(x);
dxnorm = wa2.blueNorm();
temp = fp;
fp = dxnorm - m_delta;
/* if the function is small enough, accept the current value */
/* of par. also test for the exceptional cases where parl */
/* is zero or the number of iterations has reached 10. */
if (abs(fp) <= Scalar(0.1) * m_delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
break;
/* compute the newton correction. */
wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
// we could almost use this here, but the diagonal is outside qr, in sdiag[]
// qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
for (j = 0; j < n; ++j) {
wa1[j] /= sdiag[j];
temp = wa1[j];
for (Index i = j+1; i < n; ++i)
wa1[i] -= s.coeff(i,j) * temp;
}
temp = wa1.blueNorm();
parc = fp / m_delta / temp / temp;
/* depending on the sign of the function, update parl or paru. */
if (fp > 0.)
parl = (std::max)(parl,par);
if (fp < 0.)
paru = (std::min)(paru,par);
/* compute an improved estimate for par. */
par = (std::max)(parl,par+parc);
}
if (iter == 0)
par = 0.;
return;
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_LEVENBERGMARQUARDT_H