mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-11 03:09:01 +08:00
Add missing minpack copyrights/license.
Fix LM header files and credits original MINPACK authors. Move minimizeOneStep code into its own file to get it more properly credited.
This commit is contained in:
parent
d85253ccf4
commit
4cdcb6d793
@ -34,12 +34,13 @@
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
#include "src/LevenbergMarquardt/LMqrsolv.h"
|
||||
#include "src/LevenbergMarquardt/covar.h"
|
||||
#include "src/LevenbergMarquardt/LMcovar.h"
|
||||
#include "src/LevenbergMarquardt/LMpar.h"
|
||||
|
||||
#endif
|
||||
|
||||
#include "src/LevenbergMarquardt/LevenbergMarquardt.h"
|
||||
|
||||
#include "src/LevenbergMarquardt/LMonestep.h"
|
||||
|
||||
|
||||
#endif // EIGEN_LEVENBERGMARQUARDT_MODULE
|
||||
|
52
Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt
Normal file
52
Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt
Normal file
@ -0,0 +1,52 @@
|
||||
Minpack Copyright Notice (1999) University of Chicago. All rights reserved
|
||||
|
||||
Redistribution and use in source and binary forms, with or
|
||||
without modification, are permitted provided that the
|
||||
following conditions are met:
|
||||
|
||||
1. Redistributions of source code must retain the above
|
||||
copyright notice, this list of conditions and the following
|
||||
disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following
|
||||
disclaimer in the documentation and/or other materials
|
||||
provided with the distribution.
|
||||
|
||||
3. The end-user documentation included with the
|
||||
redistribution, if any, must include the following
|
||||
acknowledgment:
|
||||
|
||||
"This product includes software developed by the
|
||||
University of Chicago, as Operator of Argonne National
|
||||
Laboratory.
|
||||
|
||||
Alternately, this acknowledgment may appear in the software
|
||||
itself, if and wherever such third-party acknowledgments
|
||||
normally appear.
|
||||
|
||||
4. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
|
||||
WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
|
||||
UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
|
||||
THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
|
||||
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
|
||||
OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
|
||||
OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
|
||||
USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
|
||||
THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
|
||||
DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
|
||||
UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
|
||||
BE CORRECTED.
|
||||
|
||||
5. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
|
||||
HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
|
||||
ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
|
||||
INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
|
||||
ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
|
||||
SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
|
||||
(INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
|
||||
EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
|
||||
POSSIBILITY OF SUCH LOSS OR DAMAGES.
|
||||
|
@ -1,3 +1,17 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// This code initially comes from MINPACK whose original authors are:
|
||||
// Copyright Jorge More - Argonne National Laboratory
|
||||
// Copyright Burt Garbow - Argonne National Laboratory
|
||||
// Copyright Ken Hillstrom - Argonne National Laboratory
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Minpack license
|
||||
// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
|
||||
|
||||
#ifndef EIGEN_LMCOVAR_H
|
||||
#define EIGEN_LMCOVAR_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@ -67,3 +81,5 @@ void covar(
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_LMCOVAR_H
|
179
Eigen/src/LevenbergMarquardt/LMonestep.h
Normal file
179
Eigen/src/LevenbergMarquardt/LMonestep.h
Normal file
@ -0,0 +1,179 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
|
||||
//
|
||||
// This code initially comes from MINPACK whose original authors are:
|
||||
// Copyright Jorge More - Argonne National Laboratory
|
||||
// Copyright Burt Garbow - Argonne National Laboratory
|
||||
// Copyright Ken Hillstrom - Argonne National Laboratory
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Minpack license
|
||||
// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
|
||||
|
||||
#ifndef EIGEN_LMONESTEP_H
|
||||
#define EIGEN_LMONESTEP_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename FunctorType>
|
||||
LevenbergMarquardtSpace::Status
|
||||
LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x)
|
||||
{
|
||||
typedef typename FunctorType::JacobianType JacobianType;
|
||||
using std::abs;
|
||||
using std::sqrt;
|
||||
RealScalar temp, temp1,temp2;
|
||||
RealScalar ratio;
|
||||
RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered;
|
||||
assert(x.size()==n); // check the caller is not cheating us
|
||||
|
||||
temp = 0.0; xnorm = 0.0;
|
||||
/* calculate the jacobian matrix. */
|
||||
Index df_ret = m_functor.df(x, m_fjac);
|
||||
if (df_ret<0)
|
||||
return LevenbergMarquardtSpace::UserAsked;
|
||||
if (df_ret>0)
|
||||
// numerical diff, we evaluated the function df_ret times
|
||||
m_nfev += df_ret;
|
||||
else m_njev++;
|
||||
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
for (int j = 0; j < x.size(); ++j)
|
||||
m_wa2(j) = m_fjac.col(j).norm();
|
||||
//FIXME Implement bluenorm for sparse vectors
|
||||
// m_wa2 = m_fjac.colwise().blueNorm();
|
||||
QRSolver qrfac(m_fjac); //FIXME Check if the QR decomposition succeed
|
||||
// Make a copy of the first factor with the associated permutation
|
||||
JacobianType rfactor;
|
||||
rfactor = qrfac.matrixQR();
|
||||
m_permutation = (qrfac.colsPermutation());
|
||||
|
||||
/* on the first iteration and if external scaling is not used, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
if (m_iter == 1) {
|
||||
if (!m_useExternalScaling)
|
||||
for (Index j = 0; j < n; ++j)
|
||||
m_diag[j] = (m_wa2[j]==0.)? 1. : m_wa2[j];
|
||||
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound m_delta. */
|
||||
xnorm = m_diag.cwiseProduct(x).stableNorm();
|
||||
m_delta = m_factor * xnorm;
|
||||
if (m_delta == 0.)
|
||||
m_delta = m_factor;
|
||||
}
|
||||
|
||||
/* form (q transpose)*m_fvec and store the first n components in */
|
||||
/* m_qtf. */
|
||||
m_wa4 = m_fvec;
|
||||
m_wa4 = qrfac.matrixQ().adjoint() * m_fvec;
|
||||
m_qtf = m_wa4.head(n);
|
||||
|
||||
/* compute the norm of the scaled gradient. */
|
||||
m_gnorm = 0.;
|
||||
if (m_fnorm != 0.)
|
||||
for (Index j = 0; j < n; ++j)
|
||||
if (m_wa2[m_permutation.indices()[j]] != 0.)
|
||||
m_gnorm = (std::max)(m_gnorm, abs( rfactor.col(j).head(j+1).dot(m_qtf.head(j+1)/m_fnorm) / m_wa2[m_permutation.indices()[j]]));
|
||||
|
||||
/* test for convergence of the gradient norm. */
|
||||
if (m_gnorm <= m_gtol)
|
||||
return LevenbergMarquardtSpace::CosinusTooSmall;
|
||||
|
||||
/* rescale if necessary. */
|
||||
if (!m_useExternalScaling)
|
||||
m_diag = m_diag.cwiseMax(m_wa2);
|
||||
|
||||
do {
|
||||
/* determine the levenberg-marquardt parameter. */
|
||||
internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1);
|
||||
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
m_wa1 = -m_wa1;
|
||||
m_wa2 = x + m_wa1;
|
||||
pnorm = m_diag.cwiseProduct(m_wa1).stableNorm();
|
||||
|
||||
/* on the first iteration, adjust the initial step bound. */
|
||||
if (m_iter == 1)
|
||||
m_delta = (std::min)(m_delta,pnorm);
|
||||
|
||||
/* evaluate the function at x + p and calculate its norm. */
|
||||
if ( m_functor(m_wa2, m_wa4) < 0)
|
||||
return LevenbergMarquardtSpace::UserAsked;
|
||||
++m_nfev;
|
||||
fnorm1 = m_wa4.stableNorm();
|
||||
|
||||
/* compute the scaled actual reduction. */
|
||||
actred = -1.;
|
||||
if (Scalar(.1) * fnorm1 < m_fnorm)
|
||||
actred = 1. - internal::abs2(fnorm1 / m_fnorm);
|
||||
|
||||
/* compute the scaled predicted reduction and */
|
||||
/* the scaled directional derivative. */
|
||||
m_wa3 = rfactor.template triangularView<Upper>() * (m_permutation.inverse() *m_wa1);
|
||||
temp1 = internal::abs2(m_wa3.stableNorm() / m_fnorm);
|
||||
temp2 = internal::abs2(sqrt(m_par) * pnorm / m_fnorm);
|
||||
prered = temp1 + temp2 / Scalar(.5);
|
||||
dirder = -(temp1 + temp2);
|
||||
|
||||
/* compute the ratio of the actual to the predicted */
|
||||
/* reduction. */
|
||||
ratio = 0.;
|
||||
if (prered != 0.)
|
||||
ratio = actred / prered;
|
||||
|
||||
/* update the step bound. */
|
||||
if (ratio <= Scalar(.25)) {
|
||||
if (actred >= 0.)
|
||||
temp = RealScalar(.5);
|
||||
if (actred < 0.)
|
||||
temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred);
|
||||
if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1))
|
||||
temp = Scalar(.1);
|
||||
/* Computing MIN */
|
||||
m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1));
|
||||
m_par /= temp;
|
||||
} else if (!(m_par != 0. && ratio < RealScalar(.75))) {
|
||||
m_delta = pnorm / RealScalar(.5);
|
||||
m_par = RealScalar(.5) * m_par;
|
||||
}
|
||||
|
||||
/* test for successful iteration. */
|
||||
if (ratio >= RealScalar(1e-4)) {
|
||||
/* successful iteration. update x, m_fvec, and their norms. */
|
||||
x = m_wa2;
|
||||
m_wa2 = m_diag.cwiseProduct(x);
|
||||
m_fvec = m_wa4;
|
||||
xnorm = m_wa2.stableNorm();
|
||||
m_fnorm = fnorm1;
|
||||
++m_iter;
|
||||
}
|
||||
|
||||
/* tests for convergence. */
|
||||
if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm)
|
||||
return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
|
||||
if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.)
|
||||
return LevenbergMarquardtSpace::RelativeReductionTooSmall;
|
||||
if (m_delta <= m_xtol * xnorm)
|
||||
return LevenbergMarquardtSpace::RelativeErrorTooSmall;
|
||||
|
||||
/* tests for termination and stringent tolerances. */
|
||||
if (m_nfev >= m_maxfev)
|
||||
return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
|
||||
if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
|
||||
return LevenbergMarquardtSpace::FtolTooSmall;
|
||||
if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm)
|
||||
return LevenbergMarquardtSpace::XtolTooSmall;
|
||||
if (m_gnorm <= NumTraits<Scalar>::epsilon())
|
||||
return LevenbergMarquardtSpace::GtolTooSmall;
|
||||
|
||||
} while (ratio < Scalar(1e-4));
|
||||
|
||||
return LevenbergMarquardtSpace::Running;
|
||||
}
|
||||
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_LMONESTEP_H
|
160
Eigen/src/LevenbergMarquardt/LMpar.h
Normal file
160
Eigen/src/LevenbergMarquardt/LMpar.h
Normal file
@ -0,0 +1,160 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// This code initially comes from MINPACK whose original authors are:
|
||||
// Copyright Jorge More - Argonne National Laboratory
|
||||
// Copyright Burt Garbow - Argonne National Laboratory
|
||||
// Copyright Ken Hillstrom - Argonne National Laboratory
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Minpack license
|
||||
// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
|
||||
|
||||
#ifndef EIGEN_LMPAR_H
|
||||
#define EIGEN_LMPAR_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template <typename QRSolver, typename VectorType>
|
||||
void lmpar2(
|
||||
const QRSolver &qr,
|
||||
const VectorType &diag,
|
||||
const VectorType &qtb,
|
||||
typename VectorType::Scalar m_delta,
|
||||
typename VectorType::Scalar &par,
|
||||
VectorType &x)
|
||||
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
typedef typename QRSolver::MatrixType MatrixType;
|
||||
typedef typename QRSolver::Scalar Scalar;
|
||||
typedef typename QRSolver::Index Index;
|
||||
|
||||
/* Local variables */
|
||||
Index j;
|
||||
Scalar fp;
|
||||
Scalar parc, parl;
|
||||
Index iter;
|
||||
Scalar temp, paru;
|
||||
Scalar gnorm;
|
||||
Scalar dxnorm;
|
||||
|
||||
|
||||
/* Function Body */
|
||||
const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
|
||||
const Index n = qr.matrixQR().cols();
|
||||
assert(n==diag.size());
|
||||
assert(n==qtb.size());
|
||||
|
||||
VectorType wa1, wa2;
|
||||
|
||||
/* compute and store in x the gauss-newton direction. if the */
|
||||
/* jacobian is rank-deficient, obtain a least squares solution. */
|
||||
|
||||
// const Index rank = qr.nonzeroPivots(); // exactly double(0.)
|
||||
const Index rank = qr.rank(); // use a threshold
|
||||
wa1 = qtb;
|
||||
wa1.tail(n-rank).setZero();
|
||||
//FIXME There is no solve in place for sparse triangularView
|
||||
//qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank));
|
||||
wa1.head(rank) = qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(qtb.head(rank));
|
||||
|
||||
x = qr.colsPermutation()*wa1;
|
||||
|
||||
/* initialize the iteration counter. */
|
||||
/* evaluate the function at the origin, and test */
|
||||
/* for acceptance of the gauss-newton direction. */
|
||||
iter = 0;
|
||||
wa2 = diag.cwiseProduct(x);
|
||||
dxnorm = wa2.blueNorm();
|
||||
fp = dxnorm - m_delta;
|
||||
if (fp <= Scalar(0.1) * m_delta) {
|
||||
par = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/* if the jacobian is not rank deficient, the newton */
|
||||
/* step provides a lower bound, parl, for the zero of */
|
||||
/* the function. otherwise set this bound to zero. */
|
||||
parl = 0.;
|
||||
if (rank==n) {
|
||||
wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2)/dxnorm;
|
||||
qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
|
||||
temp = wa1.blueNorm();
|
||||
parl = fp / m_delta / temp / temp;
|
||||
}
|
||||
|
||||
/* calculate an upper bound, paru, for the zero of the function. */
|
||||
for (j = 0; j < n; ++j)
|
||||
wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
|
||||
|
||||
gnorm = wa1.stableNorm();
|
||||
paru = gnorm / m_delta;
|
||||
if (paru == 0.)
|
||||
paru = dwarf / (std::min)(m_delta,Scalar(0.1));
|
||||
|
||||
/* if the input par lies outside of the interval (parl,paru), */
|
||||
/* set par to the closer endpoint. */
|
||||
par = (std::max)(par,parl);
|
||||
par = (std::min)(par,paru);
|
||||
if (par == 0.)
|
||||
par = gnorm / dxnorm;
|
||||
|
||||
/* beginning of an iteration. */
|
||||
MatrixType s;
|
||||
s = qr.matrixQR();
|
||||
while (true) {
|
||||
++iter;
|
||||
|
||||
/* evaluate the function at the current value of par. */
|
||||
if (par == 0.)
|
||||
par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
|
||||
wa1 = sqrt(par)* diag;
|
||||
|
||||
VectorType sdiag(n);
|
||||
lmqrsolv(s, qr.colsPermutation(), wa1, qtb, x, sdiag);
|
||||
|
||||
wa2 = diag.cwiseProduct(x);
|
||||
dxnorm = wa2.blueNorm();
|
||||
temp = fp;
|
||||
fp = dxnorm - m_delta;
|
||||
|
||||
/* if the function is small enough, accept the current value */
|
||||
/* of par. also test for the exceptional cases where parl */
|
||||
/* is zero or the number of iterations has reached 10. */
|
||||
if (abs(fp) <= Scalar(0.1) * m_delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
|
||||
break;
|
||||
|
||||
/* compute the newton correction. */
|
||||
wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
|
||||
// we could almost use this here, but the diagonal is outside qr, in sdiag[]
|
||||
// qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
|
||||
for (j = 0; j < n; ++j) {
|
||||
wa1[j] /= sdiag[j];
|
||||
temp = wa1[j];
|
||||
for (Index i = j+1; i < n; ++i)
|
||||
wa1[i] -= s.coeff(i,j) * temp;
|
||||
}
|
||||
temp = wa1.blueNorm();
|
||||
parc = fp / m_delta / temp / temp;
|
||||
|
||||
/* depending on the sign of the function, update parl or paru. */
|
||||
if (fp > 0.)
|
||||
parl = (std::max)(parl,par);
|
||||
if (fp < 0.)
|
||||
paru = (std::min)(paru,par);
|
||||
|
||||
/* compute an improved estimate for par. */
|
||||
par = (std::max)(parl,par+parc);
|
||||
}
|
||||
if (iter == 0)
|
||||
par = 0.;
|
||||
return;
|
||||
}
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_LMPAR_H
|
@ -2,13 +2,19 @@
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
|
||||
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr
|
||||
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
// This code initially comes from MINPACK whose original authors are:
|
||||
// Copyright Jorge More - Argonne National Laboratory
|
||||
// Copyright Burt Garbow - Argonne National Laboratory
|
||||
// Copyright Ken Hillstrom - Argonne National Laboratory
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Minpack license
|
||||
// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
|
||||
|
||||
#ifndef EIGEN_LMQRSOLV_H
|
||||
#define EIGEN_LMQRSOLV_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@ -179,4 +185,5 @@ void lmqrsolv(
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_LMQRSOLV_H
|
||||
|
@ -1,12 +1,17 @@
|
||||
// -*- coding: utf-8
|
||||
// vim: set fileencoding=utf-8
|
||||
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
|
||||
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
|
||||
//
|
||||
// The algorithm of this class initially comes from MINPACK whose original authors are:
|
||||
// Copyright Jorge More - Argonne National Laboratory
|
||||
// Copyright Burt Garbow - Argonne National Laboratory
|
||||
// Copyright Ken Hillstrom - Argonne National Laboratory
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Minpack license
|
||||
// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
@ -282,163 +287,6 @@ LevenbergMarquardt<FunctorType>::minimizeInit(FVectorType &x)
|
||||
return LevenbergMarquardtSpace::NotStarted;
|
||||
}
|
||||
|
||||
template<typename FunctorType>
|
||||
LevenbergMarquardtSpace::Status
|
||||
LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x)
|
||||
{
|
||||
typedef typename FunctorType::JacobianType JacobianType;
|
||||
using std::abs;
|
||||
using std::sqrt;
|
||||
RealScalar temp, temp1,temp2;
|
||||
RealScalar ratio;
|
||||
RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered;
|
||||
assert(x.size()==n); // check the caller is not cheating us
|
||||
|
||||
temp = 0.0; xnorm = 0.0;
|
||||
/* calculate the jacobian matrix. */
|
||||
Index df_ret = m_functor.df(x, m_fjac);
|
||||
if (df_ret<0)
|
||||
return LevenbergMarquardtSpace::UserAsked;
|
||||
if (df_ret>0)
|
||||
// numerical diff, we evaluated the function df_ret times
|
||||
m_nfev += df_ret;
|
||||
else m_njev++;
|
||||
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
for (int j = 0; j < x.size(); ++j)
|
||||
m_wa2(j) = m_fjac.col(j).norm();
|
||||
//FIXME Implement bluenorm for sparse vectors
|
||||
// m_wa2 = m_fjac.colwise().blueNorm();
|
||||
QRSolver qrfac(m_fjac); //FIXME Check if the QR decomposition succeed
|
||||
// Make a copy of the first factor with the associated permutation
|
||||
JacobianType rfactor;
|
||||
rfactor = qrfac.matrixQR();
|
||||
m_permutation = (qrfac.colsPermutation());
|
||||
|
||||
/* on the first iteration and if external scaling is not used, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
if (m_iter == 1) {
|
||||
if (!m_useExternalScaling)
|
||||
for (Index j = 0; j < n; ++j)
|
||||
m_diag[j] = (m_wa2[j]==0.)? 1. : m_wa2[j];
|
||||
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound m_delta. */
|
||||
xnorm = m_diag.cwiseProduct(x).stableNorm();
|
||||
m_delta = m_factor * xnorm;
|
||||
if (m_delta == 0.)
|
||||
m_delta = m_factor;
|
||||
}
|
||||
|
||||
/* form (q transpose)*m_fvec and store the first n components in */
|
||||
/* m_qtf. */
|
||||
m_wa4 = m_fvec;
|
||||
m_wa4 = qrfac.matrixQ().adjoint() * m_fvec;
|
||||
m_qtf = m_wa4.head(n);
|
||||
|
||||
/* compute the norm of the scaled gradient. */
|
||||
m_gnorm = 0.;
|
||||
if (m_fnorm != 0.)
|
||||
for (Index j = 0; j < n; ++j)
|
||||
if (m_wa2[m_permutation.indices()[j]] != 0.)
|
||||
m_gnorm = (std::max)(m_gnorm, abs( rfactor.col(j).head(j+1).dot(m_qtf.head(j+1)/m_fnorm) / m_wa2[m_permutation.indices()[j]]));
|
||||
|
||||
/* test for convergence of the gradient norm. */
|
||||
if (m_gnorm <= m_gtol)
|
||||
return LevenbergMarquardtSpace::CosinusTooSmall;
|
||||
|
||||
/* rescale if necessary. */
|
||||
if (!m_useExternalScaling)
|
||||
m_diag = m_diag.cwiseMax(m_wa2);
|
||||
|
||||
do {
|
||||
/* determine the levenberg-marquardt parameter. */
|
||||
internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1);
|
||||
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
m_wa1 = -m_wa1;
|
||||
m_wa2 = x + m_wa1;
|
||||
pnorm = m_diag.cwiseProduct(m_wa1).stableNorm();
|
||||
|
||||
/* on the first iteration, adjust the initial step bound. */
|
||||
if (m_iter == 1)
|
||||
m_delta = (std::min)(m_delta,pnorm);
|
||||
|
||||
/* evaluate the function at x + p and calculate its norm. */
|
||||
if ( m_functor(m_wa2, m_wa4) < 0)
|
||||
return LevenbergMarquardtSpace::UserAsked;
|
||||
++m_nfev;
|
||||
fnorm1 = m_wa4.stableNorm();
|
||||
|
||||
/* compute the scaled actual reduction. */
|
||||
actred = -1.;
|
||||
if (Scalar(.1) * fnorm1 < m_fnorm)
|
||||
actred = 1. - internal::abs2(fnorm1 / m_fnorm);
|
||||
|
||||
/* compute the scaled predicted reduction and */
|
||||
/* the scaled directional derivative. */
|
||||
m_wa3 = rfactor.template triangularView<Upper>() * (m_permutation.inverse() *m_wa1);
|
||||
temp1 = internal::abs2(m_wa3.stableNorm() / m_fnorm);
|
||||
temp2 = internal::abs2(sqrt(m_par) * pnorm / m_fnorm);
|
||||
prered = temp1 + temp2 / Scalar(.5);
|
||||
dirder = -(temp1 + temp2);
|
||||
|
||||
/* compute the ratio of the actual to the predicted */
|
||||
/* reduction. */
|
||||
ratio = 0.;
|
||||
if (prered != 0.)
|
||||
ratio = actred / prered;
|
||||
|
||||
/* update the step bound. */
|
||||
if (ratio <= Scalar(.25)) {
|
||||
if (actred >= 0.)
|
||||
temp = RealScalar(.5);
|
||||
if (actred < 0.)
|
||||
temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred);
|
||||
if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1))
|
||||
temp = Scalar(.1);
|
||||
/* Computing MIN */
|
||||
m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1));
|
||||
m_par /= temp;
|
||||
} else if (!(m_par != 0. && ratio < RealScalar(.75))) {
|
||||
m_delta = pnorm / RealScalar(.5);
|
||||
m_par = RealScalar(.5) * m_par;
|
||||
}
|
||||
|
||||
/* test for successful iteration. */
|
||||
if (ratio >= RealScalar(1e-4)) {
|
||||
/* successful iteration. update x, m_fvec, and their norms. */
|
||||
x = m_wa2;
|
||||
m_wa2 = m_diag.cwiseProduct(x);
|
||||
m_fvec = m_wa4;
|
||||
xnorm = m_wa2.stableNorm();
|
||||
m_fnorm = fnorm1;
|
||||
++m_iter;
|
||||
}
|
||||
|
||||
/* tests for convergence. */
|
||||
if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm)
|
||||
return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
|
||||
if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.)
|
||||
return LevenbergMarquardtSpace::RelativeReductionTooSmall;
|
||||
if (m_delta <= m_xtol * xnorm)
|
||||
return LevenbergMarquardtSpace::RelativeErrorTooSmall;
|
||||
|
||||
/* tests for termination and stringent tolerances. */
|
||||
if (m_nfev >= m_maxfev)
|
||||
return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
|
||||
if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
|
||||
return LevenbergMarquardtSpace::FtolTooSmall;
|
||||
if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm)
|
||||
return LevenbergMarquardtSpace::XtolTooSmall;
|
||||
if (m_gnorm <= NumTraits<Scalar>::epsilon())
|
||||
return LevenbergMarquardtSpace::GtolTooSmall;
|
||||
|
||||
} while (ratio < Scalar(1e-4));
|
||||
|
||||
return LevenbergMarquardtSpace::Running;
|
||||
}
|
||||
|
||||
template<typename FunctorType>
|
||||
LevenbergMarquardtSpace::Status
|
||||
LevenbergMarquardt<FunctorType>::lmder1(
|
||||
@ -491,146 +339,6 @@ LevenbergMarquardt<FunctorType>::lmdif1(
|
||||
return info;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
template <typename QRSolver, typename VectorType>
|
||||
void lmpar2(
|
||||
const QRSolver &qr,
|
||||
const VectorType &diag,
|
||||
const VectorType &qtb,
|
||||
typename VectorType::Scalar m_delta,
|
||||
typename VectorType::Scalar &par,
|
||||
VectorType &x)
|
||||
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
typedef typename QRSolver::MatrixType MatrixType;
|
||||
typedef typename QRSolver::Scalar Scalar;
|
||||
typedef typename QRSolver::Index Index;
|
||||
|
||||
/* Local variables */
|
||||
Index j;
|
||||
Scalar fp;
|
||||
Scalar parc, parl;
|
||||
Index iter;
|
||||
Scalar temp, paru;
|
||||
Scalar gnorm;
|
||||
Scalar dxnorm;
|
||||
|
||||
|
||||
/* Function Body */
|
||||
const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
|
||||
const Index n = qr.matrixQR().cols();
|
||||
assert(n==diag.size());
|
||||
assert(n==qtb.size());
|
||||
|
||||
VectorType wa1, wa2;
|
||||
|
||||
/* compute and store in x the gauss-newton direction. if the */
|
||||
/* jacobian is rank-deficient, obtain a least squares solution. */
|
||||
|
||||
// const Index rank = qr.nonzeroPivots(); // exactly double(0.)
|
||||
const Index rank = qr.rank(); // use a threshold
|
||||
wa1 = qtb;
|
||||
wa1.tail(n-rank).setZero();
|
||||
//FIXME There is no solve in place for sparse triangularView
|
||||
//qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank));
|
||||
wa1.head(rank) = qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(qtb.head(rank));
|
||||
|
||||
x = qr.colsPermutation()*wa1;
|
||||
|
||||
/* initialize the iteration counter. */
|
||||
/* evaluate the function at the origin, and test */
|
||||
/* for acceptance of the gauss-newton direction. */
|
||||
iter = 0;
|
||||
wa2 = diag.cwiseProduct(x);
|
||||
dxnorm = wa2.blueNorm();
|
||||
fp = dxnorm - m_delta;
|
||||
if (fp <= Scalar(0.1) * m_delta) {
|
||||
par = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/* if the jacobian is not rank deficient, the newton */
|
||||
/* step provides a lower bound, parl, for the zero of */
|
||||
/* the function. otherwise set this bound to zero. */
|
||||
parl = 0.;
|
||||
if (rank==n) {
|
||||
wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2)/dxnorm;
|
||||
qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
|
||||
temp = wa1.blueNorm();
|
||||
parl = fp / m_delta / temp / temp;
|
||||
}
|
||||
|
||||
/* calculate an upper bound, paru, for the zero of the function. */
|
||||
for (j = 0; j < n; ++j)
|
||||
wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
|
||||
|
||||
gnorm = wa1.stableNorm();
|
||||
paru = gnorm / m_delta;
|
||||
if (paru == 0.)
|
||||
paru = dwarf / (std::min)(m_delta,Scalar(0.1));
|
||||
|
||||
/* if the input par lies outside of the interval (parl,paru), */
|
||||
/* set par to the closer endpoint. */
|
||||
par = (std::max)(par,parl);
|
||||
par = (std::min)(par,paru);
|
||||
if (par == 0.)
|
||||
par = gnorm / dxnorm;
|
||||
|
||||
/* beginning of an iteration. */
|
||||
MatrixType s;
|
||||
s = qr.matrixQR();
|
||||
while (true) {
|
||||
++iter;
|
||||
|
||||
/* evaluate the function at the current value of par. */
|
||||
if (par == 0.)
|
||||
par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
|
||||
wa1 = sqrt(par)* diag;
|
||||
|
||||
VectorType sdiag(n);
|
||||
lmqrsolv(s, qr.colsPermutation(), wa1, qtb, x, sdiag);
|
||||
|
||||
wa2 = diag.cwiseProduct(x);
|
||||
dxnorm = wa2.blueNorm();
|
||||
temp = fp;
|
||||
fp = dxnorm - m_delta;
|
||||
|
||||
/* if the function is small enough, accept the current value */
|
||||
/* of par. also test for the exceptional cases where parl */
|
||||
/* is zero or the number of iterations has reached 10. */
|
||||
if (abs(fp) <= Scalar(0.1) * m_delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
|
||||
break;
|
||||
|
||||
/* compute the newton correction. */
|
||||
wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
|
||||
// we could almost use this here, but the diagonal is outside qr, in sdiag[]
|
||||
// qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
|
||||
for (j = 0; j < n; ++j) {
|
||||
wa1[j] /= sdiag[j];
|
||||
temp = wa1[j];
|
||||
for (Index i = j+1; i < n; ++i)
|
||||
wa1[i] -= s.coeff(i,j) * temp;
|
||||
}
|
||||
temp = wa1.blueNorm();
|
||||
parc = fp / m_delta / temp / temp;
|
||||
|
||||
/* depending on the sign of the function, update parl or paru. */
|
||||
if (fp > 0.)
|
||||
parl = (std::max)(parl,par);
|
||||
if (fp < 0.)
|
||||
paru = (std::min)(paru,par);
|
||||
|
||||
/* compute an improved estimate for par. */
|
||||
par = (std::max)(parl,par+parc);
|
||||
}
|
||||
if (iter == 0)
|
||||
par = 0.;
|
||||
return;
|
||||
}
|
||||
} // end namespace internal
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_LEVENBERGMARQUARDT_H
|
||||
|
Loading…
x
Reference in New Issue
Block a user