Add support for custom packed Lhs/Rhs blocks in tensor contractions

This commit is contained in:
Eugene Zhulenev 2019-04-01 11:47:31 -07:00
parent 45e65fbb77
commit 4e2f6de1a8
3 changed files with 247 additions and 102 deletions

View File

@ -105,7 +105,9 @@ struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKern
static const int NumDimensions = traits<LhsXprType>::NumDimensions + traits<RhsXprType>::NumDimensions - 2 * array_size<Dimensions>::value;
static const int Layout = traits<LhsXprType>::Layout;
typedef typename conditional<Pointer_type_promotion<typename LhsXprType::Scalar, Scalar>::val,
typename traits<LhsXprType>::PointerType, typename traits<RhsXprType>::PointerType>::type PointerType;
typename traits<LhsXprType>::PointerType,
typename traits<RhsXprType>::PointerType>::type
PointerType;
enum {
Flags = 0
@ -136,6 +138,80 @@ struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_,
static const int NumDimensions = traits<LeftArgType_>::NumDimensions + traits<RightArgType_>::NumDimensions - 2 * array_size<Indices_>::value;
};
// Helper class to allocate and deallocate temporary memory for packed buffers.
template <typename LhsScalar, typename RhsScalar>
struct TensorContractionBlockMemAllocator {
typedef void* BlockMemHandle;
template <typename Device>
EIGEN_DEVICE_FUNC static BlockMemHandle allocate(Device& d, const Index bm,
const Index bk,
const Index bn,
LhsScalar** lhs_block,
RhsScalar** rhs_block) {
eigen_assert(lhs_block);
eigen_assert(rhs_block);
BlockSizes sz = ComputeLhsRhsBlockSizes(bm, bk, bn);
char* block_mem = static_cast<char*>(d.allocate(sz.lhs_size + sz.rhs_size));
eigen_assert(block_mem);
*lhs_block = reinterpret_cast<LhsScalar*>(block_mem);
*rhs_block = reinterpret_cast<RhsScalar*>(block_mem + sz.lhs_size);
return block_mem;
}
template <typename Device>
EIGEN_DEVICE_FUNC static BlockMemHandle allocateSlices(
Device& d, const Index bm, const Index bk, const Index bn,
const Index num_lhs, const Index num_rhs, const Index num_slices,
std::vector<LhsScalar*>* lhs_blocks,
std::vector<RhsScalar*>* rhs_blocks) {
eigen_assert(num_slices > 0);
eigen_assert(num_lhs >= 0 && num_rhs >= 0)
eigen_assert(num_lhs == 0 || lhs_blocks);
eigen_assert(num_rhs == 0 || rhs_blocks);
BlockSizes sz = ComputeLhsRhsBlockSizes(bm, bk, bn);
void* block_mem = d.allocate(
(num_lhs * sz.lhs_size + num_rhs * sz.rhs_size) * num_slices);
eigen_assert(block_mem);
char* mem = static_cast<char*>(block_mem);
for (Index x = 0; x < num_slices; x++) {
if (num_lhs > 0) lhs_blocks[x].resize(num_lhs);
for (Index m = 0; m < num_lhs; m++) {
lhs_blocks[x][m] = reinterpret_cast<LhsScalar*>(mem);
mem += sz.lhs_size;
}
if (num_rhs > 0) rhs_blocks[x].resize(num_rhs);
for (Index n = 0; n < num_rhs; n++) {
rhs_blocks[x][n] = reinterpret_cast<RhsScalar*>(mem);
mem += sz.rhs_size;
}
}
return block_mem;
}
template <typename Device>
EIGEN_DEVICE_FUNC static void deallocate(Device& d, BlockMemHandle handle) {
d.deallocate(handle);
}
private:
struct BlockSizes {
Index lhs_size;
Index rhs_size;
};
EIGEN_DEVICE_FUNC static BlockSizes ComputeLhsRhsBlockSizes(const Index bm,
const Index bk,
const Index bn) {
Index align = numext::maxi(EIGEN_MAX_ALIGN_BYTES, 1);
BlockSizes sz;
sz.lhs_size = divup<Index>(bm * bk * sizeof(LhsScalar), align) * align;
sz.rhs_size = divup<Index>(bn * bk * sizeof(RhsScalar), align) * align;
return sz;
}
};
// WARNING: In this code we assume that Lhs and Rhs tensor expressions are in
// ColMajor storage order. This property is guaranteed by the
// TensorContractionOp evaluator. TensorContractionKernel specifies how we pack
@ -164,16 +240,28 @@ struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_,
// TensorContractionInputMapper, or some specialization of it based on the
// type of tensor expression (e.g. TensorImagePatchOp has optimized input
// mapper).
template<typename ResScalar, typename LhsScalar, typename RhsScalar,
template <typename ResScalar, typename LhsScalar, typename RhsScalar,
typename StorageIndex, typename OutputMapper, typename LhsMapper,
typename RhsMapper>
struct TensorContractionKernel {
TensorContractionKernel(StorageIndex m, StorageIndex k, StorageIndex n,
StorageIndex bm, StorageIndex bk, StorageIndex bn)
: m(m), k(k), n(n), bm(bm), bk(bk), bn(bn) {}
// Pack blocks of Lhs and Rhs into contiguous blocks in memory.
typedef LhsScalar* LhsBlock;
typedef RhsScalar* RhsBlock;
// Packed Lhs/Rhs block memory allocator.
typedef TensorContractionBlockMemAllocator<LhsScalar, RhsScalar>
BlockMemAllocator;
typedef typename BlockMemAllocator::BlockMemHandle BlockMemHandle;
typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
typedef internal::gemm_pack_lhs<LhsScalar, StorageIndex,
typename LhsMapper::SubMapper,
Traits::mr, Traits::LhsProgress,
typename Traits::LhsPacket4Packing, ColMajor>
typedef internal::gemm_pack_lhs<
LhsScalar, StorageIndex, typename LhsMapper::SubMapper, Traits::mr,
Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor>
LhsPacker;
typedef internal::gemm_pack_rhs<RhsScalar, StorageIndex,
@ -186,29 +274,61 @@ struct TensorContractionKernel {
/*ConjugateLhs*/ false, /*ConjugateRhs*/ false>
GebpKernel;
EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE
static void packLhs(LhsScalar* lhsBlock,
const typename LhsMapper::SubMapper& data_mapper,
const StorageIndex depth, const StorageIndex rows) {
LhsPacker()(lhsBlock, data_mapper, depth, rows, /*stride*/ 0, /*offset*/ 0);
template <typename Device>
EIGEN_DEVICE_FUNC BlockMemHandle allocate(Device& d, LhsBlock* lhs_block,
RhsBlock* rhs_block) {
return BlockMemAllocator::allocate(d, bm, bk, bn, lhs_block, rhs_block);
}
EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE
static void packRhs(RhsScalar* rhsBlock,
const typename RhsMapper::SubMapper& data_mapper,
const StorageIndex depth, const StorageIndex cols) {
RhsPacker()(rhsBlock, data_mapper, depth, cols);
template <typename Device>
EIGEN_DEVICE_FUNC BlockMemHandle allocateSlices(
Device& d, const StorageIndex num_lhs, const StorageIndex num_rhs,
const StorageIndex num_slices, std::vector<LhsBlock>* lhs_blocks,
std::vector<RhsBlock>* rhs_blocks) {
return BlockMemAllocator::allocateSlices(
d, bm, bk, bn, num_lhs, num_rhs, num_slices, lhs_blocks, rhs_blocks);
}
EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE
static void invoke(const OutputMapper& output_mapper,
const LhsScalar* lhsBlock, const RhsScalar* rhsBlock,
const StorageIndex rows, const StorageIndex depth,
const StorageIndex cols, const ResScalar alpha) {
template <typename Device>
EIGEN_DEVICE_FUNC static void deallocate(Device& d, BlockMemHandle handle) {
BlockMemAllocator::deallocate(d, handle);
}
EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void packLhs(
LhsBlock* lhsBlock, const typename LhsMapper::SubMapper& data_mapper,
const StorageIndex depth, const StorageIndex rows) {
LhsPacker()(*lhsBlock, data_mapper, depth, rows, /*stride*/ 0,
/*offset*/ 0);
}
EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void packRhs(
RhsBlock* rhsBlock, const typename RhsMapper::SubMapper& data_mapper,
const StorageIndex depth, const StorageIndex cols) {
RhsPacker()(*rhsBlock, data_mapper, depth, cols);
}
EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void invoke(
const OutputMapper& output_mapper, const LhsBlock& lhsBlock,
const RhsBlock& rhsBlock, const StorageIndex rows,
const StorageIndex depth, const StorageIndex cols,
const ResScalar alpha) {
static const int kComputeStrideFromBlockDimensions = -1;
GebpKernel()(output_mapper, lhsBlock, rhsBlock, rows, depth, cols, alpha,
/*strideA*/ -1, /*strideB*/ -1,
/*strideA*/ kComputeStrideFromBlockDimensions,
/*strideB*/ kComputeStrideFromBlockDimensions,
/*offsetA*/ 0, /*offsetB*/ 0);
}
private:
// These are dimensions of the original Tensors, and selected block sizes. The
// actual block sizes passed to all function above might be smaller because of
// the partial blocks at the end.
const StorageIndex m;
const StorageIndex k;
const StorageIndex n;
const StorageIndex bm;
const StorageIndex bk;
const StorageIndex bn;
};
} // end namespace internal
@ -257,7 +377,7 @@ class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXp
public:
typedef typename Eigen::internal::traits<TensorContractionOp>::Scalar Scalar;
typedef typename internal::gebp_traits<typename LhsXprType::CoeffReturnType,
typename RhsXprType::CoeffReturnType>::ResScalar CoeffReturnType;
typename RhsXprType::CoeffReturnType>::ResScalar CoeffReturnType;
typedef typename Eigen::internal::nested<TensorContractionOp>::type Nested;
typedef typename Eigen::internal::traits<TensorContractionOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorContractionOp>::Index Index;
@ -340,10 +460,10 @@ struct TensorContractionEvaluatorBase
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
TensorContractionEvaluatorBase(const XprType& op, const Device& device)
: m_leftImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(),
: m_leftImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(),
op.lhsExpression(), op.rhsExpression()), device),
m_rightImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(),
op.rhsExpression(), op.lhsExpression()), device),
m_rightImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(),
op.rhsExpression(), op.lhsExpression()), device),
m_device(device),
m_output_kernel(op.outputKernel()),
m_result(NULL) {
@ -737,11 +857,18 @@ struct TensorContractionEvaluatorBase
const Index kc = blocking.kc();
const Index mc = numext::mini(m, blocking.mc());
const Index nc = numext::mini(n, blocking.nc());
const Index sizeA = mc * kc;
const Index sizeB = kc * nc;
LhsScalar* blockA = static_cast<LhsScalar *>(this->m_device.allocate(sizeA * sizeof(LhsScalar)));
RhsScalar* blockB = static_cast<RhsScalar *>(this->m_device.allocate(sizeB * sizeof(RhsScalar)));
typedef typename TensorContractionKernel::LhsBlock LhsBlock;
typedef typename TensorContractionKernel::RhsBlock RhsBlock;
LhsBlock blockA;
RhsBlock blockB;
TensorContractionKernel kernel(m, k_slice, n, mc, kc, nc);
typedef typename TensorContractionKernel::BlockMemHandle BlockMemHandle;
const BlockMemHandle packed_mem =
kernel.allocate(this->m_device, &blockA, &blockB);
for(Index i2=0; i2<m; i2+=mc)
{
@ -749,22 +876,20 @@ struct TensorContractionEvaluatorBase
for (Index k2 = k_start; k2 < k_end; k2 += kc) {
// make sure we don't overshoot right edge of left matrix, then pack vertical panel
const Index actual_kc = numext::mini(k2 + kc, k_end) - k2;
TensorContractionKernel::packLhs(blockA, lhs.getSubMapper(i2, k2),
actual_kc, actual_mc);
kernel.packLhs(&blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc);
// series of horizontal blocks
for (Index j2 = 0; j2 < n; j2 += nc) {
// make sure we don't overshoot right edge of right matrix, then pack block
const Index actual_nc = numext::mini(j2 + nc, n) - j2;
TensorContractionKernel::packRhs(blockB, rhs.getSubMapper(k2, j2),
actual_kc, actual_nc);
kernel.packRhs(&blockB, rhs.getSubMapper(k2, j2), actual_kc,
actual_nc);
// call gebp (matrix kernel)
// The parameters here are copied from Eigen's GEMM implementation
const OutputMapper output_mapper = output.getSubMapper(i2, j2);
TensorContractionKernel::invoke(output_mapper, blockA, blockB,
actual_mc, actual_kc, actual_nc,
Scalar(1));
kernel.invoke(output_mapper, blockA, blockB, actual_mc, actual_kc,
actual_nc, Scalar(1));
// We are done with this [i2, j2] output block.
if (use_output_kernel && k2 + kc >= k_end) {
@ -775,8 +900,7 @@ struct TensorContractionEvaluatorBase
}
}
this->m_device.deallocate(blockA);
this->m_device.deallocate(blockB);
kernel.deallocate(this->m_device, packed_mem);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {

View File

@ -24,12 +24,17 @@ enum {
*/
/// The make pointer class is used by sycl in order to build the mapper class on the device. For other platform the default make pointer is used which
/// is scalar * for CoeffLoader.
template <typename Tensor, bool HasRawAccess, template <class> class MakePointer_ = MakePointer> struct CoeffLoader;
template<typename Scalar, typename Index, int side, typename Tensor, typename nocontract_t, typename contract_t,
int packet_size, bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment,
template <class> class MakePointer_ = MakePointer> class BaseTensorContractionMapper;
template <typename Tensor, bool HasRawAccess, template <class> class MakePointer_ = MakePointer>
struct CoeffLoader;
template <typename Tensor, bool HasRawAccess, template <class> class MakePointer_> struct CoeffLoader {
template <typename Scalar, typename Index, int side, typename Tensor,
typename nocontract_t, typename contract_t, int packet_size,
bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment,
template <class> class MakePointer_ = MakePointer>
class BaseTensorContractionMapper;
template <typename Tensor, bool HasRawAccess, template <class> class MakePointer_>
struct CoeffLoader {
enum {
DirectOffsets = false
};
@ -40,6 +45,12 @@ template <typename Tensor, bool HasRawAccess, template <class> class MakePointer
eigen_assert(false && "unsupported");
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const typename MakePointer_<const typename Tensor::Scalar>::Type
data() const {
eigen_assert(false && "unsupported");
return NULL;
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename Tensor::Scalar coeff(typename Tensor::Index index) const { return m_tensor.coeff(index); }
template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
@ -48,12 +59,12 @@ template <typename Tensor, bool HasRawAccess, template <class> class MakePointer
return m_tensor.template packet<LoadMode>(index);
}
private:
const Tensor m_tensor;
};
template <typename Tensor, template <class> class MakePointer_> struct CoeffLoader<Tensor, true, MakePointer_> {
template <typename Tensor, template <class> class MakePointer_>
struct CoeffLoader<Tensor, true, MakePointer_> {
enum {
DirectOffsets = true
};
@ -64,6 +75,11 @@ template <typename Tensor, template <class> class MakePointer_> struct CoeffLoad
m_data += offset;
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const typename MakePointer_<const typename Tensor::Scalar>::Type
data() const {
return m_data;
}
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename Tensor::Scalar coeff(typename Tensor::Index index) const { return loadConstant(m_data+index); }
template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
@ -214,6 +230,17 @@ class SimpleTensorContractionMapper {
return ((side == Lhs) && inner_dim_contiguous && array_size<contract_t>::value > 0) ? m_contract_strides[0] : 1;
}
const CoeffLoader<Tensor, Tensor::RawAccess, MakePointer_>& tensor() const {
return m_tensor;
}
const nocontract_t& nocontract_strides() const {
return m_nocontract_strides;
}
const nocontract_t& ij_strides() const { return m_ij_strides; }
const contract_t& contract_strides() const { return m_contract_strides; }
const contract_t& k_strides() const { return m_k_strides; }
protected:
CoeffLoader<Tensor, Tensor::RawAccess, MakePointer_> m_tensor;
const nocontract_t m_nocontract_strides;
@ -445,6 +472,10 @@ class TensorContractionSubMapper {
return false;
}
const ParentMapper& base_mapper() const { return m_base_mapper; }
Index vert_offset() const { return m_vert_offset; }
Index horiz_offset() const { return m_horiz_offset; }
private:
ParentMapper m_base_mapper;
const Index m_vert_offset;

View File

@ -280,6 +280,10 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
Scalar, LhsScalar, RhsScalar, Index, OutputMapper, LhsMapper, RhsMapper>
TensorContractionKernel;
typedef typename TensorContractionKernel::LhsBlock LhsBlock;
typedef typename TensorContractionKernel::RhsBlock RhsBlock;
typedef typename TensorContractionKernel::BlockMemHandle BlockMemHandle;
Context(const Self* self, int num_threads, Scalar* buffer, Index tm, Index tn,
Index tk, Index bm, Index bn, Index bk, Index nm, Index nn, Index nk,
Index gm, Index gn, Index nm0, Index nn0, bool shard_by_col,
@ -311,7 +315,8 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
gm_(gm),
gn_(gn),
nm0_(nm0),
nn0_(nn0)
nn0_(nn0),
kernel_(m_, k_, n_, bm_, bk_, bn_)
{
// These two options are mutually exclusive.
eigen_assert(!(parallel_pack && parallelize_by_sharding_dim_only));
@ -342,26 +347,12 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
}
// Allocate memory for packed rhs/lhs matrices.
size_t align = numext::maxi(EIGEN_MAX_ALIGN_BYTES, 1);
size_t lhs_size =
divup<size_t>(bm_ * bk_ * sizeof(LhsScalar), align) * align;
size_t rhs_size =
divup<size_t>(bn_ * bk_ * sizeof(RhsScalar), align) * align;
packed_mem_ = static_cast<char*>(device_.allocate(
(nm0_ * lhs_size + nn0_ * rhs_size) * std::min<size_t>(nk_, P - 1)));
char* mem = static_cast<char*>(packed_mem_);
for (Index x = 0; x < numext::mini<Index>(nk_, P - 1); x++) {
packed_lhs_[x].resize(nm0_);
for (Index m = 0; m < nm0_; m++) {
packed_lhs_[x][m] = reinterpret_cast<LhsScalar*>(mem);
mem += lhs_size;
}
packed_rhs_[x].resize(nn0_);
for (Index n = 0; n < nn0_; n++) {
packed_rhs_[x][n] = reinterpret_cast<RhsScalar*>(mem);
mem += rhs_size;
}
}
packed_mem_ = kernel_.allocateSlices( //
device_, //
/*num_lhs=*/nm0_, //
/*num_rhs=*/nn0_, //
/*num_slices=*/std::min<Index>(nk_, P - 1), //
packed_lhs_, packed_rhs_);
if (parallelize_by_sharding_dim_only_) {
const int num_worker_threads = device_.numThreadsInPool();
@ -373,14 +364,13 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
std::memory_order_relaxed);
Index num_blocks = num_worker_threads * gn_;
thread_local_packed_mem_ = device_.allocate(num_blocks * rhs_size);
mem = static_cast<char*>(thread_local_packed_mem_);
thread_local_packed_mem_ = kernel_.allocateSlices( //
device_, //
/*num_lhs=*/0, //
/*num_rhs=*/num_blocks, //
/*num_slices=*/1, //
/*lhs_blocks=*/nullptr, &thread_local_packed_rhs_);
thread_local_packed_rhs_.resize(num_blocks, nullptr);
for (Index i = 0; i < num_blocks; ++i) {
thread_local_packed_rhs_[i] = reinterpret_cast<RhsScalar*>(mem);
mem += rhs_size;
}
} else {
can_use_thread_local_packed_ = new std::atomic<bool>[nm_];
for (int i = 0; i < nm_; ++i)
@ -388,14 +378,12 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
std::memory_order_relaxed);
Index num_blocks = num_worker_threads * gm_;
thread_local_packed_mem_ = device_.allocate(num_blocks * lhs_size);
mem = static_cast<char*>(thread_local_packed_mem_);
thread_local_packed_lhs_.resize(num_blocks, nullptr);
for (Index i = 0; i < num_blocks; ++i) {
thread_local_packed_lhs_[i] = reinterpret_cast<LhsScalar*>(mem);
mem += lhs_size;
}
thread_local_packed_mem_ = kernel_.allocateSlices( //
device_, //
/*num_lhs=*/num_blocks, //
/*num_rhs=*/0, //
/*num_slices=*/1, &thread_local_packed_lhs_, //
/*rhs_blocks=*/nullptr);
}
}
}
@ -405,9 +393,9 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
for (Index m = 0; m < nm_; m++) delete[] state_kernel_[x][m];
delete[] state_kernel_[x];
}
device_.deallocate(packed_mem_);
kernel_.deallocate(device_, packed_mem_);
if (parallelize_by_sharding_dim_only_) {
device_.deallocate(thread_local_packed_mem_);
kernel_.deallocate(device_, thread_local_packed_mem_);
delete[] can_use_thread_local_packed_;
}
}
@ -455,6 +443,8 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
// coarsening).
const Index nm0_;
const Index nn0_;
// Tensor contraction kernel.
TensorContractionKernel kernel_;
// Parallelization strategy.
//
@ -491,9 +481,11 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
// actively executing + one to track completion of kernels in the second
// slice.
static const Index P = 3;
void* packed_mem_;
std::vector<LhsScalar*> packed_lhs_[P - 1];
std::vector<RhsScalar*> packed_rhs_[P - 1];
// Handle to the allocated temporary storage for Lhs/Rhs blocks.
BlockMemHandle packed_mem_;
std::vector<LhsBlock> packed_lhs_[P - 1];
std::vector<RhsBlock> packed_rhs_[P - 1];
// If we choose to parallelize only by the sharding dimension, each thread
// will have it's own "thead local" (not a c++ thread local storage) memory
@ -511,11 +503,11 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
// completion of the K-1 kernel, so we have to allocate "global" packed_lhs_
// and packed_rhs_ to allow kernels to be executed later on a thread
// different from the thread that was used for packing.
void* thread_local_packed_mem_;
BlockMemHandle thread_local_packed_mem_;
// Only one of these will beinitialized depending on shard_by_col value.
std::vector<LhsScalar*> thread_local_packed_lhs_;
std::vector<RhsScalar*> thread_local_packed_rhs_;
// Only one of these will be initialized depending on shard_by_col value.
std::vector<LhsBlock> thread_local_packed_lhs_;
std::vector<RhsBlock> thread_local_packed_rhs_;
// After a particular shard for Kth slice missed thread local execution
// opportunity (K-1 slice didn't complete kernels execution), we can no
@ -532,7 +524,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
std::atomic<Index> state_packing_ready_[P];
std::atomic<Index> state_switch_[P];
LhsScalar* packed_lhs(Index m, Index k, Index m1, bool use_thread_local) {
LhsBlock& packed_lhs(Index m, Index k, Index m1, bool use_thread_local) {
if (use_thread_local) {
eigen_assert(!shard_by_col_);
@ -546,7 +538,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
}
}
RhsScalar* packed_rhs(Index n, Index k, Index n1, bool use_thread_local) {
RhsBlock& packed_rhs(Index n, Index k, Index n1, bool use_thread_local) {
if (use_thread_local) {
eigen_assert(shard_by_col_);
@ -580,7 +572,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
} else {
// If we can't guarantee that all kernels in `k` slice will be
// executed sequentially in current thread, it's no longer safe to use
// thread local memory in followig slices along the k dimensions.
// thread local memory in following slices along the k dimensions.
eigen_assert(k > 0);
can_use_thread_local_packed_[m].store(false,
std::memory_order_relaxed);
@ -589,9 +581,8 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
const Index mend = m * gm_ + gm(m);
for (Index m1 = m * gm_; m1 < mend; m1++)
TensorContractionKernel::packLhs(packed_lhs(m, k, m1, use_thread_local),
lhs_.getSubMapper(m1 * bm_, k * bk_),
bk(k), bm(m1));
kernel_.packLhs(&packed_lhs(m, k, m1, use_thread_local),
lhs_.getSubMapper(m1 * bm_, k * bk_), bk(k), bm(m1));
if (!parallel_pack_ && shard_by_col_) {
assert(!use_thread_local);
@ -634,9 +625,8 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
// deadlocks.
memset(buffer_ + n1 * bn_ * m_, 0, bn(n1) * m_ * sizeof(Scalar));
}
TensorContractionKernel::packRhs(packed_rhs(n, k, n1, use_thread_local),
rhs_.getSubMapper(k * bk_, n1 * bn_),
bk(k), bn(n1));
kernel_.packRhs(&packed_rhs(n, k, n1, use_thread_local),
rhs_.getSubMapper(k * bk_, n1 * bn_), bk(k), bn(n1));
}
if (parallel_pack_ || shard_by_col_) {
@ -661,7 +651,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
for (Index n1 = n * gn_; n1 < nend; n1++) {
for (Index m1 = m * gm_; m1 < mend; m1++) {
const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_);
TensorContractionKernel::invoke(
kernel_.invoke(
output_mapper,
packed_lhs(m, k, m1, !shard_by_col_ && use_thread_local),
packed_rhs(n, k, n1, shard_by_col_ && use_thread_local), bm(m1),
@ -678,7 +668,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
for (Index m1 = m * gm_; m1 < mend; m1++)
for (Index n1 = n * gn_; n1 < nend; n1++) {
const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_);
TensorContractionKernel::invoke(
kernel_.invoke(
output_mapper,
packed_lhs(m, k, m1, !shard_by_col_ && use_thread_local),
packed_rhs(n, k, n1, shard_by_col_ && use_thread_local), bm(m1),