mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
Update the PARDISO interface to match other sparse solvers.
- Add support for Upper or Lower inputs. - Add supports for sparse RHS - Remove transposed cases, remove ordering method interface - Add full access to PARDISO parameters
This commit is contained in:
parent
1763f86364
commit
4ed87c59c7
@ -188,7 +188,9 @@ enum {
|
||||
/** View matrix as an upper triangular matrix with zeros on the diagonal. */
|
||||
StrictlyUpper=ZeroDiag|Upper,
|
||||
/** Used in BandMatrix and SelfAdjointView to indicate that the matrix is self-adjoint. */
|
||||
SelfAdjoint=0x10
|
||||
SelfAdjoint=0x10,
|
||||
/** Used to support symmetric, non-selfadjoint, complex matrices. */
|
||||
Symmetric=0x20
|
||||
};
|
||||
|
||||
/** \ingroup enums
|
||||
|
@ -32,20 +32,17 @@
|
||||
#ifndef EIGEN_PARDISOSUPPORT_H
|
||||
#define EIGEN_PARDISOSUPPORT_H
|
||||
|
||||
template<typename _MatrixType>
|
||||
class PardisoLU;
|
||||
template<typename _MatrixType>
|
||||
class PardisoLLT;
|
||||
template<typename _MatrixType>
|
||||
class PardisoLDLT;
|
||||
template<typename _MatrixType> class PardisoLU;
|
||||
template<typename _MatrixType, int Options=Upper> class PardisoLLT;
|
||||
template<typename _MatrixType, int Options=Upper> class PardisoLDLT;
|
||||
|
||||
namespace internal
|
||||
{
|
||||
template<typename Index>
|
||||
struct pardiso_run_selector
|
||||
{
|
||||
static Index run(_MKL_DSS_HANDLE_t pt, Index maxfct, Index mnum, Index type, Index phase, Index n, void *a,
|
||||
Index *ia, Index *ja, Index *perm, Index nrhs, Index *iparm, Index msglvl, void *b, void *x)
|
||||
static Index run( _MKL_DSS_HANDLE_t pt, Index maxfct, Index mnum, Index type, Index phase, Index n, void *a,
|
||||
Index *ia, Index *ja, Index *perm, Index nrhs, Index *iparm, Index msglvl, void *b, void *x)
|
||||
{
|
||||
Index error = 0;
|
||||
::pardiso(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error);
|
||||
@ -56,8 +53,8 @@ namespace internal
|
||||
struct pardiso_run_selector<long long int>
|
||||
{
|
||||
typedef long long int Index;
|
||||
static Index run(_MKL_DSS_HANDLE_t pt, Index maxfct, Index mnum, Index type, Index phase, Index n, void *a,
|
||||
Index *ia, Index *ja, Index *perm, Index nrhs, Index *iparm, Index msglvl, void *b, void *x)
|
||||
static Index run( _MKL_DSS_HANDLE_t pt, Index maxfct, Index mnum, Index type, Index phase, Index n, void *a,
|
||||
Index *ia, Index *ja, Index *perm, Index nrhs, Index *iparm, Index msglvl, void *b, void *x)
|
||||
{
|
||||
Index error = 0;
|
||||
::pardiso_64(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error);
|
||||
@ -65,8 +62,7 @@ namespace internal
|
||||
}
|
||||
};
|
||||
|
||||
template<class Pardiso>
|
||||
struct pardiso_traits;
|
||||
template<class Pardiso> struct pardiso_traits;
|
||||
|
||||
template<typename _MatrixType>
|
||||
struct pardiso_traits< PardisoLU<_MatrixType> >
|
||||
@ -112,10 +108,10 @@ class PardisoImpl
|
||||
ScalarIsComplex = NumTraits<Scalar>::IsComplex
|
||||
};
|
||||
|
||||
PardisoImpl(int flags) : m_flags(flags)
|
||||
PardisoImpl()
|
||||
{
|
||||
eigen_assert((sizeof(Index) >= sizeof(_INTEGER_t) && sizeof(Index) <= 8) && "Non-supported index type");
|
||||
memset(m_iparm, 0, sizeof(m_iparm));
|
||||
m_iparm.setZero();
|
||||
m_msglvl = 0; /* No output */
|
||||
m_initialized = false;
|
||||
}
|
||||
@ -131,7 +127,7 @@ class PardisoImpl
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful,
|
||||
* \c NumericalIssue if the matrix.appears to be negative.
|
||||
* \c NumericalIssue if the matrix appears to be negative.
|
||||
*/
|
||||
ComputationInfo info() const
|
||||
{
|
||||
@ -139,9 +135,12 @@ class PardisoImpl
|
||||
return m_info;
|
||||
}
|
||||
|
||||
int orderingMethod() const
|
||||
/** \warning for advanced usage only.
|
||||
* \returns a reference to the parameter array controlling PARDISO.
|
||||
* See the PARDISO manual to know how to use it. */
|
||||
Array<Index,64,1>& pardisoParameterArray()
|
||||
{
|
||||
return m_flags&OrderingMask;
|
||||
return m_param;
|
||||
}
|
||||
|
||||
Derived& compute(const MatrixType& matrix);
|
||||
@ -151,12 +150,26 @@ class PardisoImpl
|
||||
*/
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<PardisoImpl, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b, const int transposed = SvNoTrans) const
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_initialized && "SimplicialCholesky is not initialized.");
|
||||
eigen_assert(m_initialized && "Pardiso solver is not initialized.");
|
||||
eigen_assert(rows()==b.rows()
|
||||
&& "PardisoImpl::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return internal::solve_retval<PardisoImpl, Rhs>(*this, b.derived(), transposed);
|
||||
return internal::solve_retval<PardisoImpl, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
template<typename Rhs>
|
||||
inline const internal::sparse_solve_retval<PardisoImpl, Rhs>
|
||||
solve(const SparseMatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_initialized && "Pardiso solver is not initialized.");
|
||||
eigen_assert(rows()==b.rows()
|
||||
&& "PardisoImpl::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return internal::sparse_solve_retval<PardisoImpl, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
Derived& derived()
|
||||
@ -169,7 +182,27 @@ class PardisoImpl
|
||||
}
|
||||
|
||||
template<typename BDerived, typename XDerived>
|
||||
bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>& x, const int transposed = SvNoTrans) const;
|
||||
bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>& x) const;
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs, typename DestScalar, int DestOptions, typename DestIndex>
|
||||
void _solve_sparse(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
|
||||
{
|
||||
eigen_assert(m_matrix.rows()==b.rows());
|
||||
|
||||
// we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix.
|
||||
static const int NbColsAtOnce = 4;
|
||||
int rhsCols = b.cols();
|
||||
int size = b.rows();
|
||||
Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmp(size,rhsCols);
|
||||
for(int k=0; k<rhsCols; k+=NbColsAtOnce)
|
||||
{
|
||||
int actualCols = std::min<int>(rhsCols-k, NbColsAtOnce);
|
||||
tmp.leftCols(actualCols) = b.middleCols(k,actualCols);
|
||||
tmp.leftCols(actualCols) = derived().solve(tmp.leftCols(actualCols));
|
||||
dest.middleCols(k,actualCols) = tmp.leftCols(actualCols).sparseView();
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
void pardisoRelease()
|
||||
@ -177,19 +210,51 @@ class PardisoImpl
|
||||
if(m_initialized) // Factorization ran at least once
|
||||
{
|
||||
internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, -1, m_matrix.rows(), NULL, NULL, NULL, m_perm.data(), 0,
|
||||
m_iparm, m_msglvl, NULL, NULL);
|
||||
memset(m_iparm, 0, sizeof(m_iparm));
|
||||
m_iparm.data(), m_msglvl, NULL, NULL);
|
||||
m_iparm.setZero();
|
||||
}
|
||||
}
|
||||
|
||||
void pardisoInit(int type)
|
||||
{
|
||||
m_type = type;
|
||||
bool symmetric = abs(m_type) < 10;
|
||||
m_iparm[0] = 1; /* No solver default */
|
||||
m_iparm[1] = 3; // use Metis for the ordering
|
||||
/* Numbers of processors, value of OMP_NUM_THREADS */
|
||||
m_iparm[2] = 1;
|
||||
m_iparm[3] = 0; /* No iterative-direct algorithm */
|
||||
m_iparm[4] = 0; /* No user fill-in reducing permutation */
|
||||
m_iparm[5] = 0; /* Write solution into x */
|
||||
m_iparm[6] = 0; /* Not in use */
|
||||
m_iparm[7] = 2; /* Max numbers of iterative refinement steps */
|
||||
m_iparm[8] = 0; /* Not in use */
|
||||
m_iparm[9] = 13; /* Perturb the pivot elements with 1E-13 */
|
||||
m_iparm[10] = symmetric ? 0 : 1; /* Use nonsymmetric permutation and scaling MPS */
|
||||
m_iparm[11] = 0; /* Not in use */
|
||||
m_iparm[12] = symmetric ? 0 : 1; /* Maximum weighted matching algorithm is switched-off (default for symmetric). Try m_iparm[12] = 1 in case of inappropriate accuracy */
|
||||
m_iparm[13] = 0; /* Output: Number of perturbed pivots */
|
||||
m_iparm[14] = 0; /* Not in use */
|
||||
m_iparm[15] = 0; /* Not in use */
|
||||
m_iparm[16] = 0; /* Not in use */
|
||||
m_iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */
|
||||
m_iparm[18] = -1; /* Output: Mflops for LU factorization */
|
||||
m_iparm[19] = 0; /* Output: Numbers of CG Iterations */
|
||||
m_iparm[20] = 0; /* 1x1 pivoting */
|
||||
m_iparm[26] = 0; /* No matrix checker */
|
||||
m_iparm[27] = (sizeof(RealScalar) == 4) ? 1 : 0;
|
||||
m_iparm[34] = 0; /* Fortran indexing */
|
||||
m_iparm[59] = 1; /* Automatic switch between In-Core and Out-of-Core modes */
|
||||
}
|
||||
|
||||
protected:
|
||||
// cached data to reduce reallocation, etc.
|
||||
|
||||
ComputationInfo m_info;
|
||||
bool m_symmetric, m_initialized, m_succeeded;
|
||||
int m_flags;
|
||||
bool m_initialized, m_succeeded;
|
||||
Index m_type, m_msglvl;
|
||||
mutable void *m_pt[64];
|
||||
mutable Index m_iparm[64];
|
||||
mutable Array<Index,64,1> m_iparm;
|
||||
mutable SparseMatrix<Scalar, RowMajor> m_matrix;
|
||||
mutable IntColVectorType m_perm;
|
||||
};
|
||||
@ -204,62 +269,22 @@ Derived& PardisoImpl<Derived>::compute(const MatrixType& a)
|
||||
memset(m_pt, 0, sizeof(m_pt));
|
||||
m_initialized = true;
|
||||
|
||||
m_symmetric = abs(m_type) < 10;
|
||||
|
||||
switch (orderingMethod())
|
||||
{
|
||||
case MinimumDegree_AT_PLUS_A : m_iparm[1] = 0; break;
|
||||
case NaturalOrdering : m_iparm[5] = 1; break;
|
||||
case Metis : m_iparm[1] = 3; break;
|
||||
default:
|
||||
//std::cerr << "Eigen: ordering method \"" << Base::orderingMethod() << "\" not supported by the PARDISO backend\n";
|
||||
m_iparm[1] = 0;
|
||||
};
|
||||
|
||||
m_iparm[0] = 1; /* No solver default */
|
||||
/* Numbers of processors, value of OMP_NUM_THREADS */
|
||||
m_iparm[2] = 1;
|
||||
m_iparm[3] = 0; /* No iterative-direct algorithm */
|
||||
m_iparm[4] = 0; /* No user fill-in reducing permutation */
|
||||
m_iparm[5] = 0; /* Write solution into x */
|
||||
m_iparm[6] = 0; /* Not in use */
|
||||
m_iparm[7] = 2; /* Max numbers of iterative refinement steps */
|
||||
m_iparm[8] = 0; /* Not in use */
|
||||
m_iparm[9] = 13; /* Perturb the pivot elements with 1E-13 */
|
||||
m_iparm[10] = m_symmetric ? 0 : 1; /* Use nonsymmetric permutation and scaling MPS */
|
||||
m_iparm[11] = 0; /* Not in use */
|
||||
m_iparm[12] = m_symmetric ? 0 : 1; /* Maximum weighted matching algorithm is switched-off (default for symmetric). Try m_iparm[12] = 1 in case of inappropriate accuracy */
|
||||
m_iparm[13] = 0; /* Output: Number of perturbed pivots */
|
||||
m_iparm[14] = 0; /* Not in use */
|
||||
m_iparm[15] = 0; /* Not in use */
|
||||
m_iparm[16] = 0; /* Not in use */
|
||||
m_iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */
|
||||
m_iparm[18] = -1; /* Output: Mflops for LU factorization */
|
||||
m_iparm[19] = 0; /* Output: Numbers of CG Iterations */
|
||||
m_iparm[20] = 0; /* 1x1 pivoting */
|
||||
m_iparm[26] = 0; /* No matrix checker */
|
||||
m_iparm[27] = (sizeof(RealScalar) == 4) ? 1 : 0;
|
||||
m_iparm[34] = 0; /* Fortran indexing */
|
||||
m_iparm[59] = 1; /* Automatic switch between In-Core and Out-of-Core modes */
|
||||
bool symmetric = abs(m_type) < 10;
|
||||
m_iparm[10] = symmetric ? 0 : 1; /* Use nonsymmetric permutation and scaling MPS */
|
||||
m_iparm[12] = symmetric ? 0 : 1; /* Maximum weighted matching algorithm is switched-off (default for symmetric). Try m_iparm[12] = 1 in case of inappropriate accuracy */
|
||||
|
||||
m_perm.resize(n);
|
||||
if(orderingMethod() == NaturalOrdering)
|
||||
{
|
||||
for(Index i = 0; i < n; i++)
|
||||
m_perm[i] = i;
|
||||
}
|
||||
|
||||
m_matrix = a;
|
||||
|
||||
/* Convert to Fortran-style indexing */
|
||||
for(i = 0; i <= m_matrix.rows(); ++i)
|
||||
++m_matrix._outerIndexPtr()[i];
|
||||
++m_matrix.outerIndexPtr()[i];
|
||||
for(i = 0; i < m_matrix.nonZeros(); ++i)
|
||||
++m_matrix._innerIndexPtr()[i];
|
||||
++m_matrix.innerIndexPtr()[i];
|
||||
|
||||
Index error = internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, 12, n,
|
||||
m_matrix._valuePtr(), m_matrix._outerIndexPtr(), m_matrix._innerIndexPtr(),
|
||||
m_perm.data(), 0, m_iparm, m_msglvl, NULL, NULL);
|
||||
Index error = internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, 12, n,
|
||||
m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
|
||||
m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL);
|
||||
|
||||
switch(error)
|
||||
{
|
||||
@ -281,7 +306,7 @@ Derived& PardisoImpl<Derived>::compute(const MatrixType& a)
|
||||
template<class Base>
|
||||
template<typename BDerived,typename XDerived>
|
||||
bool PardisoImpl<Base>::_solve(const MatrixBase<BDerived> &b,
|
||||
MatrixBase<XDerived>& x, const int transposed) const
|
||||
MatrixBase<XDerived>& x) const
|
||||
{
|
||||
if(m_iparm[0] == 0) // Factorization was not computed
|
||||
return false;
|
||||
@ -293,20 +318,20 @@ bool PardisoImpl<Base>::_solve(const MatrixBase<BDerived> &b,
|
||||
eigen_assert(((MatrixBase<XDerived>::Flags & RowMajorBit) == 0 || nrhs == 1) && "Row-major matrices of unknowns are not supported");
|
||||
eigen_assert(((nrhs == 1) || b.outerStride() == b.rows()));
|
||||
|
||||
x.derived().resizeLike(b);
|
||||
//x.derived().resizeLike(b);
|
||||
|
||||
switch (transposed) {
|
||||
case SvNoTrans : m_iparm[11] = 0 ; break;
|
||||
case SvTranspose : m_iparm[11] = 2 ; break;
|
||||
case SvAdjoint : m_iparm[11] = 1 ; break;
|
||||
default:
|
||||
//std::cerr << "Eigen: transposition option \"" << transposed << "\" not supported by the PARDISO backend\n";
|
||||
m_iparm[11] = 0;
|
||||
}
|
||||
// switch (transposed) {
|
||||
// case SvNoTrans : m_iparm[11] = 0 ; break;
|
||||
// case SvTranspose : m_iparm[11] = 2 ; break;
|
||||
// case SvAdjoint : m_iparm[11] = 1 ; break;
|
||||
// default:
|
||||
// //std::cerr << "Eigen: transposition option \"" << transposed << "\" not supported by the PARDISO backend\n";
|
||||
// m_iparm[11] = 0;
|
||||
// }
|
||||
|
||||
Index error = internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, 33, n,
|
||||
m_matrix._valuePtr(), m_matrix._outerIndexPtr(), m_matrix._innerIndexPtr(),
|
||||
m_perm.data(), nrhs, m_iparm, m_msglvl, const_cast<Scalar*>(&b(0, 0)), &x(0, 0));
|
||||
Index error = internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, 33, n,
|
||||
m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
|
||||
m_perm.data(), nrhs, m_iparm.data(), m_msglvl, const_cast<Scalar*>(&b(0, 0)), &x(0, 0));
|
||||
|
||||
return error==0;
|
||||
}
|
||||
@ -331,23 +356,23 @@ class PardisoLU : public PardisoImpl< PardisoLU<MatrixType> >
|
||||
typedef PardisoImpl< PardisoLU<MatrixType> > Base;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
typedef typename Base::RealScalar RealScalar;
|
||||
using Base::m_type;
|
||||
using Base::pardisoInit;
|
||||
|
||||
public:
|
||||
|
||||
using Base::compute;
|
||||
using Base::solve;
|
||||
|
||||
PardisoLU(int flags = Metis)
|
||||
: Base(flags)
|
||||
PardisoLU()
|
||||
: Base()
|
||||
{
|
||||
m_type = Base::ScalarIsComplex ? 13 : 11;
|
||||
pardisoInit(Base::ScalarIsComplex ? 13 : 11);
|
||||
}
|
||||
|
||||
PardisoLU(const MatrixType& matrix, int flags = Metis)
|
||||
: Base(flags)
|
||||
PardisoLU(const MatrixType& matrix)
|
||||
: Base()
|
||||
{
|
||||
m_type = Base::ScalarIsComplex ? 13 : 11;
|
||||
pardisoInit(Base::ScalarIsComplex ? 13 : 11);
|
||||
compute(matrix);
|
||||
}
|
||||
};
|
||||
@ -360,34 +385,37 @@ class PardisoLU : public PardisoImpl< PardisoLU<MatrixType> >
|
||||
* using the Intel MKL PARDISO library. The sparse matrix A must be selfajoint and positive definite.
|
||||
* The vectors or matrices X and B can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam UpLo can be any bitwise combination of Upper, Lower. The default is Upper, meaning only the upper triangular part has to be used.
|
||||
* Upper|Lower can be used to tell both triangular parts can be used as input.
|
||||
*
|
||||
* \sa \ref TutorialSparseDirectSolvers
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
class PardisoLLT : public PardisoImpl< PardisoLLT<MatrixType> >
|
||||
template<typename MatrixType, int _UpLo>
|
||||
class PardisoLLT : public PardisoImpl< PardisoLLT<MatrixType,_UpLo> >
|
||||
{
|
||||
protected:
|
||||
typedef PardisoImpl< PardisoLLT<MatrixType> > Base;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
typedef typename Base::RealScalar RealScalar;
|
||||
using Base::m_type;
|
||||
using Base::pardisoInit;
|
||||
|
||||
public:
|
||||
|
||||
enum { UpLo = _UpLo };
|
||||
using Base::compute;
|
||||
using Base::solve;
|
||||
|
||||
PardisoLLT(int flags = Metis)
|
||||
: Base(flags)
|
||||
PardisoLLT()
|
||||
: Base()
|
||||
{
|
||||
m_type = Base::ScalarIsComplex ? 4 : 2;
|
||||
pardisoInit(Base::ScalarIsComplex ? 4 : 2);
|
||||
}
|
||||
|
||||
PardisoLLT(const MatrixType& matrix, int flags = Metis)
|
||||
: Base(flags)
|
||||
PardisoLLT(const MatrixType& matrix)
|
||||
: Base()
|
||||
{
|
||||
m_type = Base::ScalarIsComplex ? 4 : 2;
|
||||
pardisoInit(Base::ScalarIsComplex ? 4 : 2);
|
||||
compute(matrix);
|
||||
}
|
||||
};
|
||||
@ -397,43 +425,58 @@ class PardisoLLT : public PardisoImpl< PardisoLLT<MatrixType> >
|
||||
* \brief A sparse direct Cholesky (LLT) factorization and solver based on the PARDISO library
|
||||
*
|
||||
* This class allows to solve for A.X = B sparse linear problems via a LDL^T Cholesky factorization
|
||||
* using the Intel MKL PARDISO library. The sparse matrix A must be selfajoint and positive definite.
|
||||
* using the Intel MKL PARDISO library. The sparse matrix A is assumed to be selfajoint and positive definite.
|
||||
* For complex matrices, A can also be symmetric only, see the \a Options template parameter.
|
||||
* The vectors or matrices X and B can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam Options can be any bitwise combination of Upper, Lower, and Symmetric. The default is Upper, meaning only the upper triangular part has to be used.
|
||||
* Symmetric can be used for symmetric, non-selfadjoint complex matrices, the default being to assume a selfadjoint matrix.
|
||||
* Upper|Lower can be used to tell both triangular parts can be used as input.
|
||||
*
|
||||
* \sa \ref TutorialSparseDirectSolvers
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
class PardisoLDLT : public PardisoImpl< PardisoLDLT<MatrixType> >
|
||||
template<typename MatrixType, int Options>
|
||||
class PardisoLDLT : public PardisoImpl< PardisoLDLT<MatrixType,Options> >
|
||||
{
|
||||
protected:
|
||||
typedef PardisoImpl< PardisoLDLT<MatrixType> > Base;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
typedef typename Base::Index Index;
|
||||
typedef typename Base::RealScalar RealScalar;
|
||||
using Base::m_type;
|
||||
using Base::pardisoInit;
|
||||
|
||||
public:
|
||||
|
||||
using Base::compute;
|
||||
using Base::solve;
|
||||
enum { UpLo = Options&(Upper|Lower) };
|
||||
|
||||
PardisoLDLT(int flags = Metis)
|
||||
: Base(flags)
|
||||
PardisoLDLT()
|
||||
: Base()
|
||||
{
|
||||
m_type = Base::ScalarIsComplex ? -4 : -2;
|
||||
pardisoInit(Base::ScalarIsComplex ? ( bool(Options&Symmetric) ? 6 : -4 ) : -2);
|
||||
}
|
||||
|
||||
PardisoLDLT(const MatrixType& matrix, int flags = Metis, bool hermitian = true)
|
||||
PardisoLDLT(const MatrixType& matrix)
|
||||
: Base(flags)
|
||||
{
|
||||
pardisoInit(Base::ScalarIsComplex ? ( bool(Options&Symmetric) ? 6 : -4 ) : -2);
|
||||
compute(matrix, hermitian);
|
||||
}
|
||||
|
||||
void compute(const MatrixType& matrix, bool hermitian = true)
|
||||
void compute(const MatrixType& matrix)
|
||||
{
|
||||
m_type = Base::ScalarIsComplex ? (hermitian ? -4 : 6) : -2;
|
||||
Base::compute(matrix);
|
||||
if(Options&Upper==0)
|
||||
{
|
||||
// PARDISO supports only upper, row-major matrices
|
||||
PermutationMatrix<Dynamic,Dynamic,Index> P(0);
|
||||
SparseMatrix<Scalar,RowMajor> tmp(matrix.rows(), matrix.cols());
|
||||
tmp.template selfadjointView<Upper>() = matrix.template selfadjointView<Lower>().twistedBy(P);
|
||||
Base::compute(tmp);
|
||||
}
|
||||
else
|
||||
Base::compute(matrix);
|
||||
}
|
||||
|
||||
};
|
||||
@ -447,15 +490,23 @@ struct solve_retval<PardisoImpl<_Derived>, Rhs>
|
||||
typedef PardisoImpl<_Derived> Dec;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
||||
|
||||
solve_retval(const PardisoImpl<_Derived>& dec, const Rhs& rhs, const int transposed)
|
||||
: Base(dec, rhs), m_transposed(transposed) {}
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
dec()._solve(rhs(),dst);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, typename Rhs>
|
||||
struct sparse_solve_retval<PardisoImpl<Derived>, Rhs>
|
||||
: sparse_solve_retval_base<PardisoImpl<Derived>, Rhs>
|
||||
{
|
||||
typedef PardisoImpl<Derived> Dec;
|
||||
EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
dec()._solve(rhs(),dst,m_transposed);
|
||||
dec().derived()._solve_sparse(rhs(),dst);
|
||||
}
|
||||
|
||||
int m_transposed;
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -7,11 +7,12 @@
|
||||
|
||||
template<typename T> void test_pardiso_T()
|
||||
{
|
||||
//PardisoLLT < SparseMatrix<T, RowMajor> > pardiso_llt;
|
||||
//PardisoLDLT< SparseMatrix<T, RowMajor> > pardiso_ldlt;
|
||||
PardisoLLT < SparseMatrix<T, RowMajor> > pardiso_llt;
|
||||
PardisoLDLT< SparseMatrix<T, RowMajor> > pardiso_ldlt;
|
||||
PardisoLU < SparseMatrix<T, RowMajor> > pardiso_lu;
|
||||
|
||||
//check_sparse_spd_solving(pardiso_llt);
|
||||
check_sparse_spd_solving(pardiso_llt);
|
||||
check_sparse_spd_solving(pardiso_ldlt);
|
||||
check_sparse_square_solving(pardiso_lu);
|
||||
}
|
||||
|
||||
|
@ -101,6 +101,7 @@ template<typename Solver> void check_sparse_spd_solving(Solver& solver)
|
||||
{
|
||||
typedef typename Solver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
typedef SparseMatrix<Scalar,ColMajor> SpMat;
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
|
||||
@ -112,7 +113,7 @@ template<typename Solver> void check_sparse_spd_solving(Solver& solver)
|
||||
// generate the right hand sides
|
||||
int rhsCols = internal::random<int>(1,16);
|
||||
double density = (std::max)(8./(size*rhsCols), 0.1);
|
||||
Mat B(size,rhsCols);
|
||||
SpMat B(size,rhsCols);
|
||||
DenseVector b = DenseVector::Random(size);
|
||||
DenseMatrix dB(size,rhsCols);
|
||||
initSparse<Scalar>(density, dB, B);
|
||||
|
Loading…
x
Reference in New Issue
Block a user