mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-10 18:59:01 +08:00
Cleaning pass on SparseQR
This commit is contained in:
parent
28e139ad60
commit
4eeaff6d38
@ -1,5 +1,3 @@
|
||||
#ifndef EIGEN_SPARSE_QR_H
|
||||
#define EIGEN_SPARSE_QR_H
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
@ -10,6 +8,8 @@
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSE_QR_H
|
||||
#define EIGEN_SPARSE_QR_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
@ -37,7 +37,7 @@ namespace internal {
|
||||
* \class SparseQR
|
||||
* \brief Sparse left-looking rank-revealing QR factorization
|
||||
*
|
||||
* This class is used to perform a left-looking rank-revealing QR decomposition
|
||||
* This class implements a left-looking rank-revealing QR decomposition
|
||||
* of sparse matrices. When a column has a norm less than a given tolerance
|
||||
* it is implicitly permuted to the end. The QR factorization thus obtained is
|
||||
* given by A*P = Q*R where R is upper triangular or trapezoidal.
|
||||
@ -45,11 +45,11 @@ namespace internal {
|
||||
* P is the column permutation which is the product of the fill-reducing and the
|
||||
* rank-revealing permutations. Use colsPermutation() to get it.
|
||||
*
|
||||
* Q is the orthogonal matrix represented as Householder reflectors.
|
||||
* Q is the orthogonal matrix represented as products of Householder reflectors.
|
||||
* Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
|
||||
* You can then apply it to a vector.
|
||||
*
|
||||
* R is the sparse triangular or trapezoidal matrix. This occurs when A is rank-deficient.
|
||||
* R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient.
|
||||
* matrixR().topLeftCorner(rank(), rank()) always returns a triangular factor of full rank.
|
||||
*
|
||||
* \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
|
||||
@ -72,10 +72,10 @@ class SparseQR
|
||||
typedef Matrix<Scalar, Dynamic, 1> ScalarVector;
|
||||
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
|
||||
public:
|
||||
SparseQR () : m_isInitialized(false),m_analysisIsok(false),m_lastError(""),m_useDefaultThreshold(true)
|
||||
SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true)
|
||||
{ }
|
||||
|
||||
SparseQR(const MatrixType& mat) : m_isInitialized(false),m_analysisIsok(false),m_lastError(""),m_useDefaultThreshold(true)
|
||||
SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true)
|
||||
{
|
||||
compute(mat);
|
||||
}
|
||||
@ -97,10 +97,13 @@ class SparseQR
|
||||
|
||||
/** \returns a const reference to the \b sparse upper triangular matrix R of the QR factorization.
|
||||
*/
|
||||
const /*SparseTriangularView<MatrixType, Upper>*/MatrixType matrixR() const { return m_R; }
|
||||
/** \returns the number of columns in the R factor
|
||||
* \warning This is not the rank of the matrix. It is provided here only for compatibility
|
||||
*/
|
||||
const QRMatrixType& matrixR() const { return m_R; }
|
||||
|
||||
/** \returns the number of non linearly dependent columns as determined by the pivoting threshold.
|
||||
* \warning This is not the true rank of the matrix. It is provided here only for compatibility.
|
||||
*
|
||||
* \sa setPivotThreshold()
|
||||
*/
|
||||
Index rank() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
|
||||
@ -116,21 +119,20 @@ class SparseQR
|
||||
SparseQRMatrixQReturnType<SparseQR> matrixQ() const
|
||||
{ return SparseQRMatrixQReturnType<SparseQR>(*this); }
|
||||
|
||||
/** \returns a const reference to the fill-in reducing permutation that was applied to the columns of A
|
||||
/** \returns a const reference to the column permutation P that was applied to A such that A*P = Q*R
|
||||
* It is the combination of the fill-in reducing permutation and numerical column pivoting.
|
||||
*/
|
||||
const PermutationType colsPermutation() const
|
||||
const PermutationType& colsPermutation() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
||||
return m_outputPerm_c;
|
||||
}
|
||||
|
||||
/**
|
||||
* \returns A string describing the type of error
|
||||
*/
|
||||
std::string lastErrorMessage() const
|
||||
{
|
||||
return m_lastError;
|
||||
}
|
||||
/** \returns A string describing the type of error.
|
||||
* This method to ease debugging, not to handle errors.
|
||||
*/
|
||||
std::string lastErrorMessage() const { return m_lastError; }
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs, typename Dest>
|
||||
bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &dest) const
|
||||
@ -139,31 +141,35 @@ class SparseQR
|
||||
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
|
||||
|
||||
Index rank = this->rank();
|
||||
|
||||
// Compute Q^T * b;
|
||||
Dest y,b;
|
||||
typename Dest::PlainObject y, b;
|
||||
y = this->matrixQ().transpose() * B;
|
||||
b = y;
|
||||
|
||||
// Solve with the triangular matrix R
|
||||
y.topRows(rank) = this->matrixR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(b.topRows(rank));
|
||||
y.bottomRows(y.size()-rank).setZero();
|
||||
|
||||
// Apply the column permutation
|
||||
if (m_perm_c.size()) dest.topRows(cols()) = colsPermutation() * y.topRows(cols());
|
||||
if (m_perm_c.size()) dest.topRows(cols()) = colsPermutation() * y.topRows(cols());
|
||||
else dest = y.topRows(cols());
|
||||
|
||||
m_info = Success;
|
||||
return true;
|
||||
}
|
||||
|
||||
/** Set the threshold that is used to determine the rank and the null Householder
|
||||
* reflections. Precisely, if the norm of a householder reflection is below this
|
||||
* threshold, the entire column is treated as zero.
|
||||
*/
|
||||
/** Sets the threshold that is used to determine linearly dependent columns during the factorization.
|
||||
*
|
||||
* In practice, if during the factorization the norm of the column that has to be eliminated is below
|
||||
* this threshold, then the entire column is treated as zero, and it is moved at the end.
|
||||
*/
|
||||
void setPivotThreshold(const RealScalar& threshold)
|
||||
{
|
||||
m_useDefaultThreshold = false;
|
||||
m_threshold = threshold;
|
||||
}
|
||||
}
|
||||
|
||||
/** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
|
||||
*
|
||||
* \sa compute()
|
||||
@ -200,14 +206,15 @@ class SparseQR
|
||||
QRMatrixType m_R; // The triangular factor matrix
|
||||
QRMatrixType m_Q; // The orthogonal reflectors
|
||||
ScalarVector m_hcoeffs; // The Householder coefficients
|
||||
PermutationType m_perm_c; // Fill-reducing Column permutation
|
||||
PermutationType m_perm_c; // Fill-reducing Column permutation
|
||||
PermutationType m_pivotperm; // The permutation for rank revealing
|
||||
PermutationType m_outputPerm_c; //The final column permutation
|
||||
PermutationType m_outputPerm_c; // The final column permutation
|
||||
RealScalar m_threshold; // Threshold to determine null Householder reflections
|
||||
bool m_useDefaultThreshold; // Use default threshold
|
||||
Index m_nonzeropivots; // Number of non zero pivots found
|
||||
bool m_useDefaultThreshold; // Use default threshold
|
||||
Index m_nonzeropivots; // Number of non zero pivots found
|
||||
IndexVector m_etree; // Column elimination tree
|
||||
IndexVector m_firstRowElt; // First element in each row
|
||||
|
||||
template <typename, typename > friend struct SparseQR_QProduct;
|
||||
|
||||
};
|
||||
@ -216,7 +223,8 @@ class SparseQR
|
||||
*
|
||||
* In this step, the fill-reducing permutation is computed and applied to the columns of A
|
||||
* and the column elimination tree is computed as well. Only the sparcity pattern of \a mat is exploited.
|
||||
* \note In this step it is assumed that there is no empty row in the matrix \a mat
|
||||
*
|
||||
* \note In this step it is assumed that there is no empty row in the matrix \a mat.
|
||||
*/
|
||||
template <typename MatrixType, typename OrderingType>
|
||||
void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
|
||||
@ -239,6 +247,7 @@ void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
|
||||
|
||||
m_R.resize(n, n);
|
||||
m_Q.resize(m, n);
|
||||
|
||||
// Allocate space for nonzero elements : rough estimation
|
||||
m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
|
||||
m_Q.reserve(2*mat.nonZeros());
|
||||
@ -246,7 +255,7 @@ void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
|
||||
m_analysisIsok = true;
|
||||
}
|
||||
|
||||
/** \brief Perform the numerical QR factorization of the input matrix
|
||||
/** \brief Performs the numerical QR factorization of the input matrix
|
||||
*
|
||||
* The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with
|
||||
* a matrix having the same sparcity pattern than \a mat.
|
||||
@ -256,17 +265,21 @@ void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
|
||||
template <typename MatrixType, typename OrderingType>
|
||||
void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
||||
{
|
||||
using std::abs;
|
||||
using std::max;
|
||||
|
||||
eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step");
|
||||
Index m = mat.rows();
|
||||
Index n = mat.cols();
|
||||
IndexVector mark(m); mark.setConstant(-1); // Record the visited nodes
|
||||
IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
|
||||
Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
|
||||
ScalarVector tval(m);
|
||||
Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
|
||||
ScalarVector tval(m); // The dense vector used to compute the current column
|
||||
bool found_diag;
|
||||
|
||||
m_pmat = mat;
|
||||
m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
|
||||
// Apply the fill-in reducing permutation lazily:
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i;
|
||||
@ -280,19 +293,21 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
||||
RealScalar infNorm = 0.0;
|
||||
for (int j = 0; j < n; j++)
|
||||
{
|
||||
//FIXME No support for mat.col(i).maxCoeff())
|
||||
// FIXME No support for mat.col(i).maxCoeff())
|
||||
for(typename MatrixType::InnerIterator it(m_pmat, j); it; ++it)
|
||||
infNorm = (std::max)(infNorm, (std::abs)(it.value()));
|
||||
infNorm = (max)(infNorm, abs(it.value()));
|
||||
}
|
||||
m_threshold = 20 * (m + n) * infNorm *std::numeric_limits<RealScalar>::epsilon();
|
||||
// FIXME: 20 ??
|
||||
m_threshold = 20 * (m + n) * infNorm * NumTraits<RealScalar>::epsilon();
|
||||
}
|
||||
|
||||
m_pivotperm.resize(n);
|
||||
m_pivotperm.indices().setLinSpaced(n, 0, n-1); // For rank-revealing
|
||||
// Initialize the numerical permutation
|
||||
m_pivotperm.setIdentity(n);
|
||||
|
||||
// Left looking rank-revealing QR factorization : Compute a column of R and Q at a time
|
||||
Index rank = 0; // Record the number of valid pivots
|
||||
for (Index col = 0; col < n; col++)
|
||||
|
||||
// Left looking rank-revealing QR factorization: compute a column of R and Q at a time
|
||||
for (Index col = 0; col < n; ++col)
|
||||
{
|
||||
mark.setConstant(-1);
|
||||
m_R.startVec(col);
|
||||
@ -300,63 +315,75 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
||||
mark(rank) = col;
|
||||
Qidx(0) = rank;
|
||||
nzcolR = 0; nzcolQ = 1;
|
||||
found_diag = false; tval.setZero();
|
||||
// Symbolic factorization : Find the nonzero locations of the column k of the factors R and Q
|
||||
// i.e All the nodes (with indexes lower than rank) reachable through the col etree rooted at node k
|
||||
found_diag = false;
|
||||
tval.setZero();
|
||||
|
||||
// Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e.,
|
||||
// all the nodes (with indexes lower than rank) reachable through the column elimination tree (etree) rooted at node k.
|
||||
// Note: if the diagonal entry does not exist, then its contribution must be explicitly added,
|
||||
// thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found.
|
||||
for (typename MatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
|
||||
{
|
||||
Index curIdx = rank ;
|
||||
if (itp) curIdx = itp.row();
|
||||
if(itp) curIdx = itp.row();
|
||||
if(curIdx == rank) found_diag = true;
|
||||
// Get the nonzeros indexes of the current column of R
|
||||
|
||||
// Get the nonzeros indexes of the current column of R
|
||||
Index st = m_firstRowElt(curIdx); // The traversal of the etree starts here
|
||||
if (st < 0 )
|
||||
{
|
||||
m_lastError = " Empty row found during Numerical factorization ";
|
||||
m_lastError = "Empty row found during numerical factorization";
|
||||
// FIXME numerical issue or ivalid input ??
|
||||
m_info = NumericalIssue;
|
||||
return;
|
||||
}
|
||||
|
||||
// Traverse the etree
|
||||
Index bi = nzcolR;
|
||||
for (; mark(st) != col; st = m_etree(st))
|
||||
{
|
||||
Ridx(nzcolR) = st; // Add this row to the list
|
||||
mark(st) = col; // Mark this row as visited
|
||||
Ridx(nzcolR) = st; // Add this row to the list,
|
||||
mark(st) = col; // and mark this row as visited
|
||||
nzcolR++;
|
||||
}
|
||||
|
||||
// Reverse the list to get the topological ordering
|
||||
Index nt = nzcolR-bi;
|
||||
for(int i = 0; i < nt/2; i++) std::swap(Ridx(bi+i), Ridx(nzcolR-i-1));
|
||||
for(Index i = 0; i < nt/2; i++) std::swap(Ridx(bi+i), Ridx(nzcolR-i-1));
|
||||
|
||||
// Copy the current (curIdx,pcol) value of the input mat
|
||||
if (itp) tval(curIdx) = itp.value();
|
||||
else tval(curIdx) = Scalar(0.);
|
||||
// Copy the current (curIdx,pcol) value of the input matrix
|
||||
if(itp) tval(curIdx) = itp.value();
|
||||
else tval(curIdx) = Scalar(0);
|
||||
|
||||
// Compute the pattern of Q(:,k)
|
||||
if (curIdx > rank && mark(curIdx) != col )
|
||||
if(curIdx > rank && mark(curIdx) != col )
|
||||
{
|
||||
Qidx(nzcolQ) = curIdx; // Add this row to the pattern of Q
|
||||
mark(curIdx) = col; // And mark it as visited
|
||||
Qidx(nzcolQ) = curIdx; // Add this row to the pattern of Q,
|
||||
mark(curIdx) = col; // and mark it as visited
|
||||
nzcolQ++;
|
||||
}
|
||||
}
|
||||
|
||||
// Browse all the indexes of R(:,col) in reverse order
|
||||
for (Index i = nzcolR-1; i >= 0; i--)
|
||||
{
|
||||
Index curIdx = m_pivotperm.indices()(Ridx(i));
|
||||
// Apply the <curIdx> householder vector to tval
|
||||
Scalar tdot(0.);
|
||||
//First compute q'*tval
|
||||
|
||||
// Apply the curIdx-th householder vector to the current column (temporarily stored into tval)
|
||||
Scalar tdot(0);
|
||||
|
||||
// First compute q' * tval
|
||||
// FIXME: m_Q.col(curIdx).dot(tval) should amount to the same
|
||||
for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
|
||||
{
|
||||
tdot += internal::conj(itq.value()) * tval(itq.row());
|
||||
}
|
||||
|
||||
tdot *= m_hcoeffs(curIdx);
|
||||
// Then compute tval = tval - q*tau
|
||||
|
||||
// Then update tval = tval - q * tau
|
||||
// FIXME: tval -= tdot * m_Q.col(curIdx) should amount to the same (need to check/add support for efficient "dense ?= sparse")
|
||||
for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
|
||||
{
|
||||
tval(itq.row()) -= itq.value() * tdot;
|
||||
}
|
||||
|
||||
// Detect fill-in for the current column of Q
|
||||
if(m_etree(Ridx(i)) == rank)
|
||||
{
|
||||
@ -365,22 +392,22 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
||||
Index iQ = itq.row();
|
||||
if (mark(iQ) != col)
|
||||
{
|
||||
Qidx(nzcolQ++) = iQ; // Add this row to the pattern of Q
|
||||
mark(iQ) = col; //And mark it as visited
|
||||
Qidx(nzcolQ++) = iQ; // Add this row to the pattern of Q,
|
||||
mark(iQ) = col; // and mark it as visited
|
||||
}
|
||||
}
|
||||
}
|
||||
} // End update current column
|
||||
|
||||
// Compute the Householder reflection for the current column
|
||||
RealScalar sqrNorm =0.;
|
||||
Scalar tau; RealScalar beta;
|
||||
Scalar c0 = (nzcolQ) ? tval(Qidx(0)) : Scalar(0.);
|
||||
//First, the squared norm of Q((col+1):m, col)
|
||||
for (Index itq = 1; itq < nzcolQ; ++itq)
|
||||
{
|
||||
sqrNorm += internal::abs2(tval(Qidx(itq)));
|
||||
}
|
||||
// Compute the Householder reflection that eliminate the current column
|
||||
// FIXME this step should call the Householder module.
|
||||
Scalar tau;
|
||||
RealScalar beta;
|
||||
Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
|
||||
|
||||
// First, the squared norm of Q((col+1):m, col)
|
||||
RealScalar sqrNorm = 0.;
|
||||
for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += internal::abs2(tval(Qidx(itq)));
|
||||
|
||||
if(sqrNorm == RealScalar(0) && internal::imag(c0) == RealScalar(0))
|
||||
{
|
||||
@ -399,6 +426,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
||||
tau = internal::conj((beta-c0) / beta);
|
||||
|
||||
}
|
||||
|
||||
// Insert values in R
|
||||
for (Index i = nzcolR-1; i >= 0; i--)
|
||||
{
|
||||
@ -409,51 +437,54 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
||||
tval(curIdx) = Scalar(0.);
|
||||
}
|
||||
}
|
||||
if(std::abs(beta) >= m_threshold) {
|
||||
|
||||
if(abs(beta) >= m_threshold)
|
||||
{
|
||||
m_R.insertBackByOuterInner(col, rank) = beta;
|
||||
rank++;
|
||||
// The householder coefficient
|
||||
m_hcoeffs(col) = tau;
|
||||
/* Record the householder reflections */
|
||||
// Record the householder reflections
|
||||
for (Index itq = 0; itq < nzcolQ; ++itq)
|
||||
{
|
||||
Index iQ = Qidx(itq);
|
||||
Index iQ = Qidx(itq);
|
||||
m_Q.insertBackByOuterInnerUnordered(col,iQ) = tval(iQ);
|
||||
tval(iQ) = Scalar(0.);
|
||||
}
|
||||
} else {
|
||||
// Zero pivot found : Move implicitly this column to the end
|
||||
}
|
||||
else
|
||||
{
|
||||
// Zero pivot found: move implicitly this column to the end
|
||||
m_hcoeffs(col) = Scalar(0);
|
||||
for (Index j = rank; j < n-1; j++)
|
||||
std::swap(m_pivotperm.indices()(j), m_pivotperm.indices()[j+1]);
|
||||
|
||||
// Recompute the column elimination tree
|
||||
internal::coletree(m_pmat, m_etree, m_firstRowElt, m_pivotperm.indices().data());
|
||||
}
|
||||
}
|
||||
|
||||
// Finalize the column pointers of the sparse matrices R and Q
|
||||
m_Q.finalize(); m_Q.makeCompressed();
|
||||
m_R.finalize();m_R.makeCompressed();
|
||||
m_Q.finalize();
|
||||
m_Q.makeCompressed();
|
||||
m_R.finalize();
|
||||
m_R.makeCompressed();
|
||||
|
||||
m_nonzeropivots = rank;
|
||||
|
||||
// Permute the triangular factor to put the 'dead' columns to the end
|
||||
MatrixType tempR(m_R);
|
||||
m_R = tempR * m_pivotperm;
|
||||
|
||||
|
||||
// Compute the inverse permutation
|
||||
IndexVector iperm(n);
|
||||
for(int i = 0; i < n; i++) iperm(m_perm_c.indices()(i)) = i;
|
||||
// Update the column permutation
|
||||
m_outputPerm_c.resize(n);
|
||||
for (Index j = 0; j < n; j++)
|
||||
m_outputPerm_c.indices()(j) = iperm(m_pivotperm.indices()(j));
|
||||
if(rank<n)
|
||||
{
|
||||
// Permute the triangular factor to put the 'dead' columns to the end
|
||||
MatrixType tempR(m_R);
|
||||
m_R = tempR * m_pivotperm;
|
||||
|
||||
// Update the column permutation
|
||||
m_outputPerm_c = m_outputPerm_c * m_pivotperm;
|
||||
}
|
||||
|
||||
m_isInitialized = true;
|
||||
m_factorizationIsok = true;
|
||||
m_info = Success;
|
||||
|
||||
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
Loading…
x
Reference in New Issue
Block a user