mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-11 11:19:02 +08:00
added Cholesky module
This commit is contained in:
parent
1ec2d21ca5
commit
4ffffa670e
@ -1,3 +1,4 @@
|
|||||||
ADD_SUBDIRECTORY(Core)
|
ADD_SUBDIRECTORY(Core)
|
||||||
ADD_SUBDIRECTORY(LU)
|
ADD_SUBDIRECTORY(LU)
|
||||||
ADD_SUBDIRECTORY(QR)
|
ADD_SUBDIRECTORY(QR)
|
||||||
|
ADD_SUBDIRECTORY(Cholesky)
|
||||||
|
6
Eigen/src/Cholesky/CMakeLists.txt
Normal file
6
Eigen/src/Cholesky/CMakeLists.txt
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
FILE(GLOB Eigen_Cholesky_SRCS "*.h")
|
||||||
|
|
||||||
|
INSTALL(FILES
|
||||||
|
${Eigen_Cholesky_SRCS}
|
||||||
|
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Cholesky
|
||||||
|
)
|
140
Eigen/src/Cholesky/Cholesky.h
Normal file
140
Eigen/src/Cholesky/Cholesky.h
Normal file
@ -0,0 +1,140 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#ifndef EIGEN_CHOLESKY_H
|
||||||
|
#define EIGEN_CHOLESKY_H
|
||||||
|
|
||||||
|
/** \class Cholesky
|
||||||
|
*
|
||||||
|
* \brief Standard Cholesky decomposition of a matrix and associated features
|
||||||
|
*
|
||||||
|
* \param MatrixType the type of the matrix of which we are computing the Cholesky decomposition
|
||||||
|
*
|
||||||
|
* This class performs a standard Cholesky decomposition of a symmetric, positive definite
|
||||||
|
* matrix A such that A = U'U = LL', where U is upper triangular.
|
||||||
|
*
|
||||||
|
* While the Cholesky decomposition is particularly useful to solve selfadjoint problems like A'A x = b,
|
||||||
|
* for that purpose, we recommend the Cholesky decomposition without square root which is more stable
|
||||||
|
* and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
|
||||||
|
* situation like generalised eigen problem with hermitian matrices.
|
||||||
|
*
|
||||||
|
* \sa class CholeskyWithoutSquareRoot
|
||||||
|
*/
|
||||||
|
template<typename MatrixType> class Cholesky
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||||
|
|
||||||
|
Cholesky(const MatrixType& matrix)
|
||||||
|
: m_matrix(matrix.rows(), matrix.cols())
|
||||||
|
{
|
||||||
|
compute(matrix);
|
||||||
|
}
|
||||||
|
|
||||||
|
Triangular<Upper, Temporary<Transpose<MatrixType> > > matrixU(void) const
|
||||||
|
{
|
||||||
|
return m_matrix.transpose().temporary().upper();
|
||||||
|
}
|
||||||
|
|
||||||
|
Triangular<Lower, MatrixType> matrixL(void) const
|
||||||
|
{
|
||||||
|
return m_matrix.lower();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }
|
||||||
|
|
||||||
|
template<typename DerivedVec>
|
||||||
|
typename DerivedVec::Eval solve(MatrixBase<DerivedVec> &vecB);
|
||||||
|
|
||||||
|
/** Compute / recompute the Cholesky decomposition A = U'U = LL' of \a matrix
|
||||||
|
*/
|
||||||
|
void compute(const MatrixType& matrix);
|
||||||
|
|
||||||
|
protected:
|
||||||
|
/** \internal
|
||||||
|
* Used to compute and store the cholesky decomposition.
|
||||||
|
* The strict upper part correspond to the coefficients of the input
|
||||||
|
* symmetric matrix, while the lower part store U'=L.
|
||||||
|
*/
|
||||||
|
MatrixType m_matrix;
|
||||||
|
bool m_isPositiveDefinite;
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
void Cholesky<MatrixType>::compute(const MatrixType& matrix)
|
||||||
|
{
|
||||||
|
assert(matrix.rows()==matrix.cols());
|
||||||
|
const int size = matrix.rows();
|
||||||
|
m_matrix = matrix;
|
||||||
|
|
||||||
|
#if 1
|
||||||
|
// this version looks faster for large matrices
|
||||||
|
m_isPositiveDefinite = m_matrix(0,0) > Scalar(0);
|
||||||
|
m_matrix(0,0) = ei_sqrt(m_matrix(0,0));
|
||||||
|
m_matrix.col(0).end(size-1) = m_matrix.row(0).end(size-1) / m_matrix(0,0);
|
||||||
|
for (int j = 1; j < size; ++j)
|
||||||
|
{
|
||||||
|
Scalar tmp = m_matrix(j,j) - m_matrix.row(j).start(j).norm2();
|
||||||
|
m_isPositiveDefinite = m_isPositiveDefinite && tmp > Scalar(0);
|
||||||
|
m_matrix(j,j) = ei_sqrt(tmp<Scalar(0) ? Scalar(0) : tmp);
|
||||||
|
tmp = Scalar(1) / m_matrix(j,j);
|
||||||
|
for (int i = j+1; i < size; ++i)
|
||||||
|
m_matrix(i,j) = tmp * (m_matrix(j,i) -
|
||||||
|
(m_matrix.row(i).start(j) * m_matrix.row(j).start(j).transpose())(0,0) );
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
m_isPositiveDefinite = true;
|
||||||
|
for (int i = 0; i < size; ++i)
|
||||||
|
{
|
||||||
|
m_isPositiveDefinite = m_isPositiveDefinite && m_matrix(i,i) > Scalar(0);
|
||||||
|
m_matrix(i,i) = ei_sqrt(m_matrix(i,i));
|
||||||
|
if (i+1<size)
|
||||||
|
m_matrix.col(i).end(size-i-1) /= m_matrix(i,i);
|
||||||
|
for (int j = i+1; j < size; ++j)
|
||||||
|
{
|
||||||
|
m_matrix.col(j).end(size-j) -= m_matrix(j,i) * m_matrix.col(i).end(size-j);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
/** Solve A*x = b with A symmeric positive definite using the available Cholesky decomposition.
|
||||||
|
*/
|
||||||
|
template<typename MatrixType>
|
||||||
|
template<typename DerivedVec>
|
||||||
|
typename DerivedVec::Eval Cholesky<MatrixType>::solve(MatrixBase<DerivedVec> &vecB)
|
||||||
|
{
|
||||||
|
const int size = m_matrix.rows();
|
||||||
|
ei_assert(size==vecB.size());
|
||||||
|
|
||||||
|
// FIXME .inverseProduct creates a temporary that is not nice since it is called twice
|
||||||
|
// add a .inverseProductInPlace ??
|
||||||
|
return m_matrix.transpose().upper()
|
||||||
|
.inverseProduct(m_matrix.lower().inverseProduct(vecB));
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#endif // EIGEN_CHOLESKY_H
|
148
Eigen/src/Cholesky/CholeskyWithoutSquareRoot.h
Normal file
148
Eigen/src/Cholesky/CholeskyWithoutSquareRoot.h
Normal file
@ -0,0 +1,148 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#ifndef EIGEN_CHOLESKY_WITHOUT_SQUARE_ROOT_H
|
||||||
|
#define EIGEN_CHOLESKY_WITHOUT_SQUARE_ROOT_H
|
||||||
|
|
||||||
|
/** \class CholeskyWithoutSquareRoot
|
||||||
|
*
|
||||||
|
* \brief Robust Cholesky decomposition of a matrix and associated features
|
||||||
|
*
|
||||||
|
* \param MatrixType the type of the matrix of which we are computing the Cholesky decomposition
|
||||||
|
*
|
||||||
|
* This class performs a Cholesky decomposition without square root of a symmetric, positive definite
|
||||||
|
* matrix A such that A = U' D U = L D L', where U is upper triangular with a unit diagonal and D is a diagonal
|
||||||
|
* matrix.
|
||||||
|
*
|
||||||
|
* Compared to a standard Cholesky decomposition, avoiding the square roots allows for faster and more
|
||||||
|
* stable computation.
|
||||||
|
*
|
||||||
|
* \todo what about complex matrices ?
|
||||||
|
*
|
||||||
|
* \sa class Cholesky
|
||||||
|
*/
|
||||||
|
template<typename MatrixType> class CholeskyWithoutSquareRoot
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||||
|
|
||||||
|
CholeskyWithoutSquareRoot(const MatrixType& matrix)
|
||||||
|
: m_matrix(matrix.rows(), matrix.cols())
|
||||||
|
{
|
||||||
|
compute(matrix);
|
||||||
|
}
|
||||||
|
|
||||||
|
Triangular<Upper|UnitDiagBit, Temporary<Transpose<MatrixType> > > matrixU(void) const
|
||||||
|
{
|
||||||
|
return m_matrix.transpose().temporary().upperWithUnitDiag();
|
||||||
|
}
|
||||||
|
|
||||||
|
Triangular<Upper|UnitDiagBit, MatrixType > matrixL(void) const
|
||||||
|
{
|
||||||
|
return m_matrix.lowerWithUnitDiag();
|
||||||
|
}
|
||||||
|
|
||||||
|
DiagonalCoeffs<MatrixType> vectorD(void) const
|
||||||
|
{
|
||||||
|
return m_matrix.diagonal();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool isPositiveDefinite(void) const
|
||||||
|
{
|
||||||
|
return m_matrix.diagonal().minCoeff() > Scalar(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename DerivedVec>
|
||||||
|
typename DerivedVec::Eval solve(MatrixBase<DerivedVec> &vecB);
|
||||||
|
|
||||||
|
/** Compute the Cholesky decomposition A = U'DU = LDL' of \a matrix
|
||||||
|
*/
|
||||||
|
void compute(const MatrixType& matrix);
|
||||||
|
|
||||||
|
protected:
|
||||||
|
/** \internal
|
||||||
|
* Used to compute and store the cholesky decomposition A = U'DU = LDL'.
|
||||||
|
* The strict upper part is used during the decomposition, the strict lower
|
||||||
|
* part correspond to the coefficients of U'=L (its diagonal is equal to 1 and
|
||||||
|
* is not stored), and the diagonal entries correspond to D.
|
||||||
|
*/
|
||||||
|
MatrixType m_matrix;
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
void CholeskyWithoutSquareRoot<MatrixType>::compute(const MatrixType& matrix)
|
||||||
|
{
|
||||||
|
assert(matrix.rows()==matrix.cols());
|
||||||
|
const int size = matrix.rows();
|
||||||
|
m_matrix = matrix;
|
||||||
|
#if 0
|
||||||
|
for (int i = 0; i < size; ++i)
|
||||||
|
{
|
||||||
|
Scalar tmp = Scalar(1) / m_matrix(i,i);
|
||||||
|
for (int j = i+1; j < size; ++j)
|
||||||
|
{
|
||||||
|
m_matrix(j,i) = m_matrix(i,j) * tmp;
|
||||||
|
m_matrix.row(j).end(size-j) -= m_matrix(j,i) * m_matrix.row(i).end(size-j);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
// this version looks faster for large matrices
|
||||||
|
m_matrix.col(0).end(size-1) = m_matrix.row(0).end(size-1) / m_matrix(0,0);
|
||||||
|
for (int j = 1; j < size; ++j)
|
||||||
|
{
|
||||||
|
Scalar tmp = m_matrix(j,j) - (m_matrix.row(j).start(j) * m_matrix.col(j).start(j))(0,0);
|
||||||
|
m_matrix(j,j) = tmp;
|
||||||
|
tmp = Scalar(1) / tmp;
|
||||||
|
for (int i = j+1; i < size; ++i)
|
||||||
|
{
|
||||||
|
m_matrix(j,i) = (m_matrix(j,i) - (m_matrix.row(i).start(j) * m_matrix.col(j).start(j))(0,0) );
|
||||||
|
m_matrix(i,j) = tmp * m_matrix(j,i);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
/** Solve A*x = b with A symmeric positive definite using the available Cholesky decomposition.
|
||||||
|
*/
|
||||||
|
template<typename MatrixType>
|
||||||
|
template<typename DerivedVec>
|
||||||
|
typename DerivedVec::Eval CholeskyWithoutSquareRoot<MatrixType>::solve(MatrixBase<DerivedVec> &vecB)
|
||||||
|
{
|
||||||
|
const int size = m_matrix.rows();
|
||||||
|
ei_assert(size==vecB.size());
|
||||||
|
|
||||||
|
// FIXME .inverseProduct creates a temporary that is not nice since it is called twice
|
||||||
|
// maybe add a .inverseProductInPlace() ??
|
||||||
|
return m_matrix.transpose().upperWithUnitDiag()
|
||||||
|
.inverseProduct(
|
||||||
|
(m_matrix.lowerWithUnitDiag()
|
||||||
|
.inverseProduct(vecB))
|
||||||
|
.cwiseQuotient(m_matrix.diagonal())
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#endif // EIGEN_CHOLESKY_WITHOUT_SQUARE_ROOT_H
|
@ -7,18 +7,19 @@ FIND_PACKAGE(Qt4 REQUIRED)
|
|||||||
INCLUDE_DIRECTORIES( ${QT_INCLUDE_DIR} )
|
INCLUDE_DIRECTORIES( ${QT_INCLUDE_DIR} )
|
||||||
|
|
||||||
SET(test_SRCS
|
SET(test_SRCS
|
||||||
triangular.cpp
|
cholesky.cpp
|
||||||
main.cpp
|
main.cpp
|
||||||
basicstuff.cpp
|
# basicstuff.cpp
|
||||||
linearstructure.cpp
|
# linearstructure.cpp
|
||||||
product.cpp
|
# product.cpp
|
||||||
adjoint.cpp
|
# adjoint.cpp
|
||||||
submatrices.cpp
|
# submatrices.cpp
|
||||||
miscmatrices.cpp
|
# miscmatrices.cpp
|
||||||
smallvectors.cpp
|
# smallvectors.cpp
|
||||||
map.cpp
|
# map.cpp
|
||||||
cwiseop.cpp
|
# cwiseop.cpp
|
||||||
determinant.cpp
|
# determinant.cpp
|
||||||
|
# triangular.cpp
|
||||||
)
|
)
|
||||||
QT4_AUTOMOC(${test_SRCS})
|
QT4_AUTOMOC(${test_SRCS})
|
||||||
|
|
||||||
|
65
test/cholesky.cpp
Normal file
65
test/cholesky.cpp
Normal file
@ -0,0 +1,65 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#include "main.h"
|
||||||
|
|
||||||
|
#include <Eigen/Cholesky>
|
||||||
|
|
||||||
|
namespace Eigen {
|
||||||
|
|
||||||
|
template<typename MatrixType> void cholesky(const MatrixType& m)
|
||||||
|
{
|
||||||
|
/* this test covers the following files:
|
||||||
|
Cholesky.h CholeskyWithoutSquareRoot.h
|
||||||
|
*/
|
||||||
|
int rows = m.rows();
|
||||||
|
int cols = m.cols();
|
||||||
|
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
|
||||||
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||||
|
|
||||||
|
MatrixType a = MatrixType::random(rows,cols).transpose();
|
||||||
|
VectorType b = VectorType::random(cols);
|
||||||
|
SquareMatrixType covMat = a.transpose() * a;
|
||||||
|
|
||||||
|
CholeskyWithoutSquareRoot<SquareMatrixType> cholnosqrt(covMat);
|
||||||
|
VERIFY_IS_APPROX(covMat, cholnosqrt.matrixU().transpose() * cholnosqrt.vectorD().asDiagonal() * cholnosqrt.matrixU());
|
||||||
|
VERIFY_IS_APPROX(covMat * cholnosqrt.solve(b), b);
|
||||||
|
|
||||||
|
Cholesky<SquareMatrixType> chol(covMat);
|
||||||
|
VERIFY_IS_APPROX(covMat, chol.matrixU().transpose() * chol.matrixU());
|
||||||
|
VERIFY_IS_APPROX(covMat * chol.solve(b), b);
|
||||||
|
}
|
||||||
|
|
||||||
|
void EigenTest::testCholesky()
|
||||||
|
{
|
||||||
|
for(int i = 0; i < 1; i++) {
|
||||||
|
cholesky(Matrix3f());
|
||||||
|
cholesky(Matrix4d());
|
||||||
|
cholesky(MatrixXd(17,17));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace Eigen
|
23
test/main.h
23
test/main.h
@ -204,17 +204,18 @@ class EigenTest : public QObject
|
|||||||
EigenTest(int repeat) : m_repeat(repeat) {}
|
EigenTest(int repeat) : m_repeat(repeat) {}
|
||||||
|
|
||||||
private slots:
|
private slots:
|
||||||
void testBasicStuff();
|
// void testBasicStuff();
|
||||||
void testLinearStructure();
|
// void testLinearStructure();
|
||||||
void testProduct();
|
// void testProduct();
|
||||||
void testAdjoint();
|
// void testAdjoint();
|
||||||
void testSubmatrices();
|
// void testSubmatrices();
|
||||||
void testMiscMatrices();
|
// void testMiscMatrices();
|
||||||
void testSmallVectors();
|
// void testSmallVectors();
|
||||||
void testMap();
|
// void testMap();
|
||||||
void testCwiseops();
|
// void testCwiseops();
|
||||||
void testDeterminant();
|
// void testDeterminant();
|
||||||
void testTriangular();
|
// void testTriangular();
|
||||||
|
void testCholesky();
|
||||||
protected:
|
protected:
|
||||||
int m_repeat;
|
int m_repeat;
|
||||||
};
|
};
|
||||||
|
Loading…
x
Reference in New Issue
Block a user