mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-16 14:49:39 +08:00
* exit Sum.h, exit Prod.h, welcome vectorization of redux() !
* add vectorization for minCoeff and maxCoeff
This commit is contained in:
parent
dc97d483fd
commit
51c991af45
@ -138,8 +138,6 @@ namespace Eigen {
|
||||
#include "src/Core/Transpose.h"
|
||||
#include "src/Core/DiagonalMatrix.h"
|
||||
#include "src/Core/DiagonalCoeffs.h"
|
||||
#include "src/Core/Sum.h"
|
||||
#include "src/Core/Prod.h"
|
||||
#include "src/Core/Redux.h"
|
||||
#include "src/Core/Visitor.h"
|
||||
#include "src/Core/Fuzzy.h"
|
||||
|
@ -37,6 +37,9 @@ template<typename Scalar> struct ei_scalar_sum_op EIGEN_EMPTY_STRUCT {
|
||||
template<typename PacketScalar>
|
||||
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
|
||||
{ return ei_padd(a,b); }
|
||||
template<typename PacketScalar>
|
||||
EIGEN_STRONG_INLINE const Scalar predux(const PacketScalar& a) const
|
||||
{ return ei_predux(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_sum_op<Scalar> > {
|
||||
@ -56,6 +59,9 @@ template<typename Scalar> struct ei_scalar_product_op EIGEN_EMPTY_STRUCT {
|
||||
template<typename PacketScalar>
|
||||
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
|
||||
{ return ei_pmul(a,b); }
|
||||
template<typename PacketScalar>
|
||||
EIGEN_STRONG_INLINE const Scalar predux(const PacketScalar& a) const
|
||||
{ return ei_predux_mul(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_product_op<Scalar> > {
|
||||
@ -75,6 +81,9 @@ template<typename Scalar> struct ei_scalar_min_op EIGEN_EMPTY_STRUCT {
|
||||
template<typename PacketScalar>
|
||||
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
|
||||
{ return ei_pmin(a,b); }
|
||||
template<typename PacketScalar>
|
||||
EIGEN_STRONG_INLINE const Scalar predux(const PacketScalar& a) const
|
||||
{ return ei_predux_min(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_min_op<Scalar> > {
|
||||
@ -94,6 +103,9 @@ template<typename Scalar> struct ei_scalar_max_op EIGEN_EMPTY_STRUCT {
|
||||
template<typename PacketScalar>
|
||||
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
|
||||
{ return ei_pmax(a,b); }
|
||||
template<typename PacketScalar>
|
||||
EIGEN_STRONG_INLINE const Scalar predux(const PacketScalar& a) const
|
||||
{ return ei_predux_max(a); }
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_max_op<Scalar> > {
|
||||
@ -123,7 +135,7 @@ template<typename Scalar> struct ei_scalar_hypot_op EIGEN_EMPTY_STRUCT {
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_hypot_op<Scalar> > {
|
||||
enum { Cost = 5 * NumTraits<Scalar>::MulCost };
|
||||
enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 };
|
||||
};
|
||||
|
||||
// other binary functors:
|
||||
@ -197,7 +209,7 @@ struct ei_functor_traits<ei_scalar_abs_op<Scalar> >
|
||||
{
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = false // this could actually be vectorized with SSSE3.
|
||||
PacketAccess = false // FIXME this could actually be vectorized with SSSE3.
|
||||
};
|
||||
};
|
||||
|
||||
|
@ -100,6 +100,14 @@ template<typename Packet> inline typename ei_unpacket_traits<Packet>::type ei_pr
|
||||
template<typename Packet> inline typename ei_unpacket_traits<Packet>::type ei_predux_mul(const Packet& a)
|
||||
{ return a; }
|
||||
|
||||
/** \internal \returns the min of the elements of \a a*/
|
||||
template<typename Packet> inline typename ei_unpacket_traits<Packet>::type ei_predux_min(const Packet& a)
|
||||
{ return a; }
|
||||
|
||||
/** \internal \returns the max of the elements of \a a*/
|
||||
template<typename Packet> inline typename ei_unpacket_traits<Packet>::type ei_predux_max(const Packet& a)
|
||||
{ return a; }
|
||||
|
||||
/** \internal \returns the reversed elements of \a a*/
|
||||
template<typename Packet> inline Packet ei_preverse(const Packet& a)
|
||||
{ return a; }
|
||||
|
@ -1,262 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_PROD_H
|
||||
#define EIGEN_PROD_H
|
||||
|
||||
/***************************************************************************
|
||||
* Part 1 : the logic deciding a strategy for vectorization and unrolling
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_prod_traits
|
||||
{
|
||||
private:
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<typename Derived::Scalar>::size
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
Vectorization = (int(Derived::Flags)&ActualPacketAccessBit)
|
||||
&& (int(Derived::Flags)&LinearAccessBit)
|
||||
? LinearVectorization
|
||||
: NoVectorization
|
||||
};
|
||||
|
||||
private:
|
||||
enum {
|
||||
Cost = Derived::SizeAtCompileTime * Derived::CoeffReadCost
|
||||
+ (Derived::SizeAtCompileTime-1) * NumTraits<typename Derived::Scalar>::MulCost,
|
||||
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Vectorization) == int(NoVectorization) ? 1 : int(PacketSize))
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
Unrolling = Cost <= UnrollingLimit
|
||||
? CompleteUnrolling
|
||||
: NoUnrolling
|
||||
};
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 2 : unrollers
|
||||
***************************************************************************/
|
||||
|
||||
/*** no vectorization ***/
|
||||
|
||||
template<typename Derived, int Start, int Length>
|
||||
struct ei_prod_novec_unroller
|
||||
{
|
||||
enum {
|
||||
HalfLength = Length/2
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
|
||||
inline static Scalar run(const Derived &mat)
|
||||
{
|
||||
return ei_prod_novec_unroller<Derived, Start, HalfLength>::run(mat)
|
||||
* ei_prod_novec_unroller<Derived, Start+HalfLength, Length-HalfLength>::run(mat);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, int Start>
|
||||
struct ei_prod_novec_unroller<Derived, Start, 1>
|
||||
{
|
||||
enum {
|
||||
col = Start / Derived::RowsAtCompileTime,
|
||||
row = Start % Derived::RowsAtCompileTime
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
|
||||
inline static Scalar run(const Derived &mat)
|
||||
{
|
||||
return mat.coeff(row, col);
|
||||
}
|
||||
};
|
||||
|
||||
/*** vectorization ***/
|
||||
|
||||
template<typename Derived, int Start, int Length>
|
||||
struct ei_prod_vec_unroller
|
||||
{
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<typename Derived::Scalar>::size,
|
||||
HalfLength = Length/2
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
inline static PacketScalar run(const Derived &mat)
|
||||
{
|
||||
return ei_pmul(
|
||||
ei_prod_vec_unroller<Derived, Start, HalfLength>::run(mat),
|
||||
ei_prod_vec_unroller<Derived, Start+HalfLength, Length-HalfLength>::run(mat) );
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, int Start>
|
||||
struct ei_prod_vec_unroller<Derived, Start, 1>
|
||||
{
|
||||
enum {
|
||||
index = Start * ei_packet_traits<typename Derived::Scalar>::size,
|
||||
row = int(Derived::Flags)&RowMajorBit
|
||||
? index / int(Derived::ColsAtCompileTime)
|
||||
: index % Derived::RowsAtCompileTime,
|
||||
col = int(Derived::Flags)&RowMajorBit
|
||||
? index % int(Derived::ColsAtCompileTime)
|
||||
: index / Derived::RowsAtCompileTime,
|
||||
alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
inline static PacketScalar run(const Derived &mat)
|
||||
{
|
||||
return mat.template packet<alignment>(row, col);
|
||||
}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 3 : implementation of all cases
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Derived,
|
||||
int Vectorization = ei_prod_traits<Derived>::Vectorization,
|
||||
int Unrolling = ei_prod_traits<Derived>::Unrolling
|
||||
>
|
||||
struct ei_prod_impl;
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_prod_impl<Derived, NoVectorization, NoUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
static Scalar run(const Derived& mat)
|
||||
{
|
||||
ei_assert(mat.rows()>0 && mat.cols()>0 && "you are using a non initialized matrix");
|
||||
Scalar res;
|
||||
res = mat.coeff(0, 0);
|
||||
for(int i = 1; i < mat.rows(); ++i)
|
||||
res *= mat.coeff(i, 0);
|
||||
for(int j = 1; j < mat.cols(); ++j)
|
||||
for(int i = 0; i < mat.rows(); ++i)
|
||||
res *= mat.coeff(i, j);
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_prod_impl<Derived, NoVectorization, CompleteUnrolling>
|
||||
: public ei_prod_novec_unroller<Derived, 0, Derived::SizeAtCompileTime>
|
||||
{};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_prod_impl<Derived, LinearVectorization, NoUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
static Scalar run(const Derived& mat)
|
||||
{
|
||||
const int size = mat.size();
|
||||
const int packetSize = ei_packet_traits<Scalar>::size;
|
||||
const int alignedStart = (Derived::Flags & AlignedBit)
|
||||
|| !(Derived::Flags & DirectAccessBit)
|
||||
? 0
|
||||
: ei_alignmentOffset(&mat.const_cast_derived().coeffRef(0), size);
|
||||
enum {
|
||||
alignment = (Derived::Flags & DirectAccessBit) || (Derived::Flags & AlignedBit)
|
||||
? Aligned : Unaligned
|
||||
};
|
||||
const int alignedSize = ((size-alignedStart)/packetSize)*packetSize;
|
||||
const int alignedEnd = alignedStart + alignedSize;
|
||||
Scalar res;
|
||||
|
||||
if(alignedSize)
|
||||
{
|
||||
PacketScalar packet_res = mat.template packet<alignment>(alignedStart);
|
||||
for(int index = alignedStart + packetSize; index < alignedEnd; index += packetSize)
|
||||
packet_res = ei_pmul(packet_res, mat.template packet<alignment>(index));
|
||||
res = ei_predux_mul(packet_res);
|
||||
}
|
||||
else // too small to vectorize anything.
|
||||
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
|
||||
{
|
||||
res = Scalar(1);
|
||||
}
|
||||
|
||||
for(int index = 0; index < alignedStart; ++index)
|
||||
res *= mat.coeff(index);
|
||||
|
||||
for(int index = alignedEnd; index < size; ++index)
|
||||
res *= mat.coeff(index);
|
||||
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_prod_impl<Derived, LinearVectorization, CompleteUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<Scalar>::size,
|
||||
Size = Derived::SizeAtCompileTime,
|
||||
VectorizationSize = (Size / PacketSize) * PacketSize
|
||||
};
|
||||
static Scalar run(const Derived& mat)
|
||||
{
|
||||
Scalar res = ei_predux_mul(ei_prod_vec_unroller<Derived, 0, Size / PacketSize>::run(mat));
|
||||
if (VectorizationSize != Size)
|
||||
res *= ei_prod_novec_unroller<Derived, VectorizationSize, Size-VectorizationSize>::run(mat);
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 4 : implementation of MatrixBase methods
|
||||
***************************************************************************/
|
||||
|
||||
/** \returns the product of all coefficients of *this
|
||||
*
|
||||
* Example: \include MatrixBase_prod.cpp
|
||||
* Output: \verbinclude MatrixBase_prod.out
|
||||
*
|
||||
* \sa sum()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::prod() const
|
||||
{
|
||||
typedef typename ei_cleantype<typename Derived::Nested>::type ThisNested;
|
||||
return ei_prod_impl<ThisNested>::run(derived());
|
||||
}
|
||||
|
||||
#endif // EIGEN_PROD_H
|
@ -26,48 +26,147 @@
|
||||
#ifndef EIGEN_REDUX_H
|
||||
#define EIGEN_REDUX_H
|
||||
|
||||
template<typename BinaryOp, typename Derived, int Start, int Length>
|
||||
struct ei_redux_impl
|
||||
// TODO
|
||||
// * implement other kind of vectorization
|
||||
// * factorize code
|
||||
|
||||
/***************************************************************************
|
||||
* Part 1 : the logic deciding a strategy for vectorization and unrolling
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
struct ei_redux_traits
|
||||
{
|
||||
private:
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<typename Derived::Scalar>::size
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
Vectorization = (int(Derived::Flags)&ActualPacketAccessBit)
|
||||
&& (int(Derived::Flags)&LinearAccessBit)
|
||||
&& (ei_functor_traits<Func>::PacketAccess)
|
||||
? LinearVectorization
|
||||
: NoVectorization
|
||||
};
|
||||
|
||||
private:
|
||||
enum {
|
||||
Cost = Derived::SizeAtCompileTime * Derived::CoeffReadCost
|
||||
+ (Derived::SizeAtCompileTime-1) * NumTraits<typename Derived::Scalar>::AddCost,
|
||||
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Vectorization) == int(NoVectorization) ? 1 : int(PacketSize))
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
Unrolling = Cost <= UnrollingLimit
|
||||
? CompleteUnrolling
|
||||
: NoUnrolling
|
||||
};
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 2 : unrollers
|
||||
***************************************************************************/
|
||||
|
||||
/*** no vectorization ***/
|
||||
|
||||
template<typename Func, typename Derived, int Start, int Length>
|
||||
struct ei_redux_novec_unroller
|
||||
{
|
||||
enum {
|
||||
HalfLength = Length/2
|
||||
};
|
||||
|
||||
typedef typename ei_result_of<BinaryOp(typename Derived::Scalar)>::type Scalar;
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
|
||||
static Scalar run(const Derived &mat, const BinaryOp& func)
|
||||
EIGEN_STRONG_INLINE static Scalar run(const Derived &mat, const Func& func)
|
||||
{
|
||||
return func(
|
||||
ei_redux_impl<BinaryOp, Derived, Start, HalfLength>::run(mat, func),
|
||||
ei_redux_impl<BinaryOp, Derived, Start+HalfLength, Length - HalfLength>::run(mat, func));
|
||||
return func(ei_redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
|
||||
ei_redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename BinaryOp, typename Derived, int Start>
|
||||
struct ei_redux_impl<BinaryOp, Derived, Start, 1>
|
||||
template<typename Func, typename Derived, int Start>
|
||||
struct ei_redux_novec_unroller<Func, Derived, Start, 1>
|
||||
{
|
||||
enum {
|
||||
col = Start / Derived::RowsAtCompileTime,
|
||||
row = Start % Derived::RowsAtCompileTime
|
||||
};
|
||||
|
||||
typedef typename ei_result_of<BinaryOp(typename Derived::Scalar)>::type Scalar;
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
|
||||
static Scalar run(const Derived &mat, const BinaryOp &)
|
||||
EIGEN_STRONG_INLINE static Scalar run(const Derived &mat, const Func&)
|
||||
{
|
||||
return mat.coeff(row, col);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename BinaryOp, typename Derived, int Start>
|
||||
struct ei_redux_impl<BinaryOp, Derived, Start, Dynamic>
|
||||
/*** vectorization ***/
|
||||
|
||||
template<typename Func, typename Derived, int Start, int Length>
|
||||
struct ei_redux_vec_unroller
|
||||
{
|
||||
typedef typename ei_result_of<BinaryOp(typename Derived::Scalar)>::type Scalar;
|
||||
static Scalar run(const Derived& mat, const BinaryOp& func)
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<typename Derived::Scalar>::size,
|
||||
HalfLength = Length/2
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
EIGEN_STRONG_INLINE static PacketScalar run(const Derived &mat, const Func& func)
|
||||
{
|
||||
return func.packetOp(
|
||||
ei_redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
|
||||
ei_redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) );
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Func, typename Derived, int Start>
|
||||
struct ei_redux_vec_unroller<Func, Derived, Start, 1>
|
||||
{
|
||||
enum {
|
||||
index = Start * ei_packet_traits<typename Derived::Scalar>::size,
|
||||
row = int(Derived::Flags)&RowMajorBit
|
||||
? index / int(Derived::ColsAtCompileTime)
|
||||
: index % Derived::RowsAtCompileTime,
|
||||
col = int(Derived::Flags)&RowMajorBit
|
||||
? index % int(Derived::ColsAtCompileTime)
|
||||
: index / Derived::RowsAtCompileTime,
|
||||
alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
EIGEN_STRONG_INLINE static PacketScalar run(const Derived &mat, const Func&)
|
||||
{
|
||||
return mat.template packet<alignment>(row, col);
|
||||
}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 3 : implementation of all cases
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Func, typename Derived,
|
||||
int Vectorization = ei_redux_traits<Func, Derived>::Vectorization,
|
||||
int Unrolling = ei_redux_traits<Func, Derived>::Unrolling
|
||||
>
|
||||
struct ei_redux_impl;
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
struct ei_redux_impl<Func, Derived, NoVectorization, NoUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
static Scalar run(const Derived& mat, const Func& func)
|
||||
{
|
||||
ei_assert(mat.rows()>0 && mat.cols()>0 && "you are using a non initialized matrix");
|
||||
Scalar res;
|
||||
res = mat.coeff(0,0);
|
||||
res = mat.coeff(0, 0);
|
||||
for(int i = 1; i < mat.rows(); ++i)
|
||||
res = func(res, mat.coeff(i, 0));
|
||||
for(int j = 1; j < mat.cols(); ++j)
|
||||
@ -77,6 +176,77 @@ struct ei_redux_impl<BinaryOp, Derived, Start, Dynamic>
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
struct ei_redux_impl<Func,Derived, NoVectorization, CompleteUnrolling>
|
||||
: public ei_redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime>
|
||||
{};
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
struct ei_redux_impl<Func, Derived, LinearVectorization, NoUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
static Scalar run(const Derived& mat, const Func& func)
|
||||
{
|
||||
const int size = mat.size();
|
||||
const int packetSize = ei_packet_traits<Scalar>::size;
|
||||
const int alignedStart = (Derived::Flags & AlignedBit)
|
||||
|| !(Derived::Flags & DirectAccessBit)
|
||||
? 0
|
||||
: ei_alignmentOffset(&mat.const_cast_derived().coeffRef(0), size);
|
||||
enum {
|
||||
alignment = (Derived::Flags & DirectAccessBit) || (Derived::Flags & AlignedBit)
|
||||
? Aligned : Unaligned
|
||||
};
|
||||
const int alignedSize = ((size-alignedStart)/packetSize)*packetSize;
|
||||
const int alignedEnd = alignedStart + alignedSize;
|
||||
Scalar res;
|
||||
if(alignedSize)
|
||||
{
|
||||
PacketScalar packet_res = mat.template packet<alignment>(alignedStart);
|
||||
for(int index = alignedStart + packetSize; index < alignedEnd; index += packetSize)
|
||||
packet_res = func.packetOp(packet_res, mat.template packet<alignment>(index));
|
||||
res = func.predux(packet_res);
|
||||
|
||||
for(int index = 0; index < alignedStart; ++index)
|
||||
res = func(res,mat.coeff(index));
|
||||
|
||||
for(int index = alignedEnd; index < size; ++index)
|
||||
res = func(res,mat.coeff(index));
|
||||
}
|
||||
else // too small to vectorize anything.
|
||||
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
|
||||
{
|
||||
res = mat.coeff(0);
|
||||
for(int index = 1; index < size; ++index)
|
||||
res = func(res,mat.coeff(index));
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Func, typename Derived>
|
||||
struct ei_redux_impl<Func, Derived, LinearVectorization, CompleteUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<Scalar>::size,
|
||||
Size = Derived::SizeAtCompileTime,
|
||||
VectorizationSize = (Size / PacketSize) * PacketSize
|
||||
};
|
||||
EIGEN_STRONG_INLINE static Scalar run(const Derived& mat, const Func& func)
|
||||
{
|
||||
Scalar res = func.predux(ei_redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func));
|
||||
if (VectorizationSize != Size)
|
||||
res = func(res,ei_redux_novec_unroller<Func, Derived, VectorizationSize, Size-VectorizationSize>::run(mat,func));
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/** \returns the result of a full redux operation on the whole matrix or vector using \a func
|
||||
*
|
||||
* The template parameter \a BinaryOp is the type of the functor \a func which must be
|
||||
@ -85,22 +255,20 @@ struct ei_redux_impl<BinaryOp, Derived, Start, Dynamic>
|
||||
* \sa MatrixBase::sum(), MatrixBase::minCoeff(), MatrixBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename BinaryOp>
|
||||
typename ei_result_of<BinaryOp(typename ei_traits<Derived>::Scalar)>::type
|
||||
MatrixBase<Derived>::redux(const BinaryOp& func) const
|
||||
template<typename Func>
|
||||
inline typename ei_result_of<Func(typename ei_traits<Derived>::Scalar)>::type
|
||||
MatrixBase<Derived>::redux(const Func& func) const
|
||||
{
|
||||
const bool unroll = SizeAtCompileTime * CoeffReadCost
|
||||
+ (SizeAtCompileTime-1) * ei_functor_traits<BinaryOp>::Cost
|
||||
<= EIGEN_UNROLLING_LIMIT;
|
||||
typename Derived::Nested nested(derived());
|
||||
typedef typename ei_cleantype<typename Derived::Nested>::type ThisNested;
|
||||
return ei_redux_impl<BinaryOp, ThisNested, 0, unroll ? int(SizeAtCompileTime) : Dynamic>
|
||||
::run(derived(), func);
|
||||
return ei_redux_impl<Func, ThisNested>
|
||||
::run(nested, func);
|
||||
}
|
||||
|
||||
/** \returns the minimum of all coefficients of *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename ei_traits<Derived>::Scalar
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::minCoeff() const
|
||||
{
|
||||
return this->redux(Eigen::ei_scalar_min_op<Scalar>());
|
||||
@ -109,10 +277,48 @@ MatrixBase<Derived>::minCoeff() const
|
||||
/** \returns the maximum of all coefficients of *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename ei_traits<Derived>::Scalar
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::maxCoeff() const
|
||||
{
|
||||
return this->redux(Eigen::ei_scalar_max_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \returns the sum of all coefficients of *this
|
||||
*
|
||||
* \sa trace(), prod()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::sum() const
|
||||
{
|
||||
return this->redux(Eigen::ei_scalar_sum_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \returns the product of all coefficients of *this
|
||||
*
|
||||
* Example: \include MatrixBase_prod.cpp
|
||||
* Output: \verbinclude MatrixBase_prod.out
|
||||
*
|
||||
* \sa sum()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::prod() const
|
||||
{
|
||||
return this->redux(Eigen::ei_scalar_product_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
|
||||
*
|
||||
* \c *this can be any matrix, not necessarily square.
|
||||
*
|
||||
* \sa diagonal(), sum()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::trace() const
|
||||
{
|
||||
return diagonal().sum();
|
||||
}
|
||||
|
||||
#endif // EIGEN_REDUX_H
|
||||
|
@ -1,272 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_SUM_H
|
||||
#define EIGEN_SUM_H
|
||||
|
||||
/***************************************************************************
|
||||
* Part 1 : the logic deciding a strategy for vectorization and unrolling
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_sum_traits
|
||||
{
|
||||
private:
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<typename Derived::Scalar>::size
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
Vectorization = (int(Derived::Flags)&ActualPacketAccessBit)
|
||||
&& (int(Derived::Flags)&LinearAccessBit)
|
||||
? LinearVectorization
|
||||
: NoVectorization
|
||||
};
|
||||
|
||||
private:
|
||||
enum {
|
||||
Cost = Derived::SizeAtCompileTime * Derived::CoeffReadCost
|
||||
+ (Derived::SizeAtCompileTime-1) * NumTraits<typename Derived::Scalar>::AddCost,
|
||||
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Vectorization) == int(NoVectorization) ? 1 : int(PacketSize))
|
||||
};
|
||||
|
||||
public:
|
||||
enum {
|
||||
Unrolling = Cost <= UnrollingLimit
|
||||
? CompleteUnrolling
|
||||
: NoUnrolling
|
||||
};
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 2 : unrollers
|
||||
***************************************************************************/
|
||||
|
||||
/*** no vectorization ***/
|
||||
|
||||
template<typename Derived, int Start, int Length>
|
||||
struct ei_sum_novec_unroller
|
||||
{
|
||||
enum {
|
||||
HalfLength = Length/2
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
|
||||
inline static Scalar run(const Derived &mat)
|
||||
{
|
||||
return ei_sum_novec_unroller<Derived, Start, HalfLength>::run(mat)
|
||||
+ ei_sum_novec_unroller<Derived, Start+HalfLength, Length-HalfLength>::run(mat);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, int Start>
|
||||
struct ei_sum_novec_unroller<Derived, Start, 1>
|
||||
{
|
||||
enum {
|
||||
col = Start / Derived::RowsAtCompileTime,
|
||||
row = Start % Derived::RowsAtCompileTime
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
|
||||
inline static Scalar run(const Derived &mat)
|
||||
{
|
||||
return mat.coeff(row, col);
|
||||
}
|
||||
};
|
||||
|
||||
/*** vectorization ***/
|
||||
|
||||
template<typename Derived, int Start, int Length>
|
||||
struct ei_sum_vec_unroller
|
||||
{
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<typename Derived::Scalar>::size,
|
||||
HalfLength = Length/2
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
inline static PacketScalar run(const Derived &mat)
|
||||
{
|
||||
return ei_padd(
|
||||
ei_sum_vec_unroller<Derived, Start, HalfLength>::run(mat),
|
||||
ei_sum_vec_unroller<Derived, Start+HalfLength, Length-HalfLength>::run(mat) );
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, int Start>
|
||||
struct ei_sum_vec_unroller<Derived, Start, 1>
|
||||
{
|
||||
enum {
|
||||
index = Start * ei_packet_traits<typename Derived::Scalar>::size,
|
||||
row = int(Derived::Flags)&RowMajorBit
|
||||
? index / int(Derived::ColsAtCompileTime)
|
||||
: index % Derived::RowsAtCompileTime,
|
||||
col = int(Derived::Flags)&RowMajorBit
|
||||
? index % int(Derived::ColsAtCompileTime)
|
||||
: index / Derived::RowsAtCompileTime,
|
||||
alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned
|
||||
};
|
||||
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
inline static PacketScalar run(const Derived &mat)
|
||||
{
|
||||
return mat.template packet<alignment>(row, col);
|
||||
}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 3 : implementation of all cases
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Derived,
|
||||
int Vectorization = ei_sum_traits<Derived>::Vectorization,
|
||||
int Unrolling = ei_sum_traits<Derived>::Unrolling
|
||||
>
|
||||
struct ei_sum_impl;
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_sum_impl<Derived, NoVectorization, NoUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
static Scalar run(const Derived& mat)
|
||||
{
|
||||
ei_assert(mat.rows()>0 && mat.cols()>0 && "you are using a non initialized matrix");
|
||||
Scalar res;
|
||||
res = mat.coeff(0, 0);
|
||||
for(int i = 1; i < mat.rows(); ++i)
|
||||
res += mat.coeff(i, 0);
|
||||
for(int j = 1; j < mat.cols(); ++j)
|
||||
for(int i = 0; i < mat.rows(); ++i)
|
||||
res += mat.coeff(i, j);
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_sum_impl<Derived, NoVectorization, CompleteUnrolling>
|
||||
: public ei_sum_novec_unroller<Derived, 0, Derived::SizeAtCompileTime>
|
||||
{};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_sum_impl<Derived, LinearVectorization, NoUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
|
||||
static Scalar run(const Derived& mat)
|
||||
{
|
||||
const int size = mat.size();
|
||||
const int packetSize = ei_packet_traits<Scalar>::size;
|
||||
const int alignedStart = (Derived::Flags & AlignedBit)
|
||||
|| !(Derived::Flags & DirectAccessBit)
|
||||
? 0
|
||||
: ei_alignmentOffset(&mat.const_cast_derived().coeffRef(0), size);
|
||||
enum {
|
||||
alignment = (Derived::Flags & DirectAccessBit) || (Derived::Flags & AlignedBit)
|
||||
? Aligned : Unaligned
|
||||
};
|
||||
const int alignedSize = ((size-alignedStart)/packetSize)*packetSize;
|
||||
const int alignedEnd = alignedStart + alignedSize;
|
||||
Scalar res;
|
||||
|
||||
if(alignedSize)
|
||||
{
|
||||
PacketScalar packet_res = mat.template packet<alignment>(alignedStart);
|
||||
for(int index = alignedStart + packetSize; index < alignedEnd; index += packetSize)
|
||||
packet_res = ei_padd(packet_res, mat.template packet<alignment>(index));
|
||||
res = ei_predux(packet_res);
|
||||
}
|
||||
else // too small to vectorize anything.
|
||||
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
|
||||
{
|
||||
res = Scalar(0);
|
||||
}
|
||||
|
||||
for(int index = 0; index < alignedStart; ++index)
|
||||
res += mat.coeff(index);
|
||||
|
||||
for(int index = alignedEnd; index < size; ++index)
|
||||
res += mat.coeff(index);
|
||||
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_sum_impl<Derived, LinearVectorization, CompleteUnrolling>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||
enum {
|
||||
PacketSize = ei_packet_traits<Scalar>::size,
|
||||
Size = Derived::SizeAtCompileTime,
|
||||
VectorizationSize = (Size / PacketSize) * PacketSize
|
||||
};
|
||||
static Scalar run(const Derived& mat)
|
||||
{
|
||||
Scalar res = ei_predux(ei_sum_vec_unroller<Derived, 0, Size / PacketSize>::run(mat));
|
||||
if (VectorizationSize != Size)
|
||||
res += ei_sum_novec_unroller<Derived, VectorizationSize, Size-VectorizationSize>::run(mat);
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Part 4 : implementation of MatrixBase methods
|
||||
***************************************************************************/
|
||||
|
||||
/** \returns the sum of all coefficients of *this
|
||||
*
|
||||
* \sa trace(), prod()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::sum() const
|
||||
{
|
||||
typedef typename ei_cleantype<typename Derived::Nested>::type ThisNested;
|
||||
return ei_sum_impl<ThisNested>::run(derived());
|
||||
}
|
||||
|
||||
/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
|
||||
*
|
||||
* \c *this can be any matrix, not necessarily square.
|
||||
*
|
||||
* \sa diagonal(), sum()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::trace() const
|
||||
{
|
||||
return diagonal().sum();
|
||||
}
|
||||
|
||||
#endif // EIGEN_SUM_H
|
@ -177,7 +177,7 @@ template<> inline v4f ei_ploadu(const float* from)
|
||||
return (v4f) vec_perm(MSQ, LSQ, mask); // align the data
|
||||
}
|
||||
|
||||
template<> inline v4i ei_ploadu(const int* from)
|
||||
template<> inline v4i ei_ploadu(const int* from)
|
||||
{
|
||||
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
|
||||
__vector unsigned char MSQ, LSQ;
|
||||
@ -198,7 +198,7 @@ template<> inline v4f ei_pset1(const float& from)
|
||||
return vc;
|
||||
}
|
||||
|
||||
template<> inline v4i ei_pset1(const int& from)
|
||||
template<> inline v4i ei_pset1(const int& from)
|
||||
{
|
||||
int __attribute__(aligned(16)) ai[4];
|
||||
ai[0] = from;
|
||||
@ -248,26 +248,28 @@ template<> inline void ei_pstoreu(int* to , const v4i& from )
|
||||
|
||||
template<> inline float ei_pfirst(const v4f& a)
|
||||
{
|
||||
float __attribute__(aligned(16)) af[4];
|
||||
float EIGEN_ALIGN_128 af[4];
|
||||
vec_st(a, 0, af);
|
||||
return af[0];
|
||||
}
|
||||
|
||||
template<> inline int ei_pfirst(const v4i& a)
|
||||
{
|
||||
int __attribute__(aligned(16)) ai[4];
|
||||
int EIGEN_ALIGN_128 ai[4];
|
||||
vec_st(a, 0, ai);
|
||||
return ai[0];
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE v4f ei_preverse(const v4f& a)
|
||||
{
|
||||
static const __vector unsigned char reverse_mask = {12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3};
|
||||
static const __vector unsigned char reverse_mask =
|
||||
{12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3};
|
||||
return (v4f)vec_perm((__vector unsigned char)a,(__vector unsigned char)a,reverse_mask);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE v4i ei_preverse(const v4i& a)
|
||||
{
|
||||
static const __vector unsigned char __attribute__(aligned(16)) reverse_mask = {12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3};
|
||||
static const __vector unsigned char __attribute__(aligned(16)) reverse_mask =
|
||||
{12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3};
|
||||
return (v4i)vec_perm((__vector unsigned char)a,(__vector unsigned char)a,reverse_mask);
|
||||
}
|
||||
|
||||
@ -344,26 +346,59 @@ inline int ei_predux(const v4i& a)
|
||||
return ei_pfirst(sum);
|
||||
}
|
||||
|
||||
// implement other reductions operators
|
||||
inline float ei_predux_mul(const v4f& a)
|
||||
{
|
||||
v4f b, sum;
|
||||
b = (v4f)vec_sld(a, a, 8);
|
||||
sum = ei_pmul(a, b);
|
||||
b = (v4f)vec_sld(sum, sum, 4);
|
||||
sum = ei_pmul(sum, b);
|
||||
return ei_pfirst(sum);
|
||||
v4f prod;
|
||||
prod = ei_pmul(a, (v4f)vec_sld(a, a, 8));
|
||||
return ei_pfirst(ei_pmul(prod, (v4f)vec_sld(prod, prod, 4)));
|
||||
}
|
||||
|
||||
inline int ei_predux_mul(const v4i& a)
|
||||
{
|
||||
v4i b, sum;
|
||||
b = (v4i)vec_sld(a, a, 8);
|
||||
sum = ei_pmul(a, b);
|
||||
b = (v4i)vec_sld(sum, sum, 4);
|
||||
sum = ei_pmul(sum, b);
|
||||
return ei_pfirst(sum);
|
||||
EIGEN_ALIGN_128 int aux[4];
|
||||
ei_pstore(aux, a);
|
||||
return aux[0] * aux[1] * aux[2] * aux[3];
|
||||
}
|
||||
|
||||
inline float ei_predux_min(const v4f& a)
|
||||
{
|
||||
EIGEN_ALIGN_128 float aux[4];
|
||||
ei_pstore(aux, a);
|
||||
register float aux0 = aux[0]<aux[1] ? aux[0] : aux[1];
|
||||
register float aux2 = aux[2]<aux[3] ? aux[2] : aux[3];
|
||||
return aux0<aux2 ? aux0 : aux2;
|
||||
}
|
||||
|
||||
inline int ei_predux_min(const v4i& a)
|
||||
{
|
||||
EIGEN_ALIGN_128 int aux[4];
|
||||
ei_pstore(aux, a);
|
||||
register int aux0 = aux[0]<aux[1] ? aux[0] : aux[1];
|
||||
register int aux2 = aux[2]<aux[3] ? aux[2] : aux[3];
|
||||
return aux0<aux2 ? aux0 : aux2;
|
||||
}
|
||||
|
||||
inline float ei_predux_max(const v4f& a)
|
||||
{
|
||||
EIGEN_ALIGN_128 float aux[4];
|
||||
ei_pstore(aux, a);
|
||||
register float aux0 = aux[0]>aux[1] ? aux[0] : aux[1];
|
||||
register float aux2 = aux[2]>aux[3] ? aux[2] : aux[3];
|
||||
return aux0>aux2 ? aux0 : aux2;
|
||||
}
|
||||
|
||||
inline int ei_predux_max(const v4i& a)
|
||||
{
|
||||
EIGEN_ALIGN_128 int aux[4];
|
||||
ei_pstore(aux, a);
|
||||
register int aux0 = aux[0]>aux[1] ? aux[0] : aux[1];
|
||||
register int aux2 = aux[2]>aux[3] ? aux[2] : aux[3];
|
||||
return aux0>aux2 ? aux0 : aux2;
|
||||
}
|
||||
|
||||
|
||||
|
||||
template<int Offset>
|
||||
struct ei_palign_impl<Offset, v4f>
|
||||
{
|
||||
|
@ -53,6 +53,7 @@ template<> EIGEN_STRONG_INLINE __m128 ei_pmul<__m128>(const __m128& a, const _
|
||||
template<> EIGEN_STRONG_INLINE __m128d ei_pmul<__m128d>(const __m128d& a, const __m128d& b) { return _mm_mul_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE __m128i ei_pmul<__m128i>(const __m128i& a, const __m128i& b)
|
||||
{
|
||||
// this version is very slightly faster than 4 scalar products
|
||||
return _mm_or_si128(
|
||||
_mm_and_si128(
|
||||
_mm_mul_epu32(a,b),
|
||||
@ -76,18 +77,18 @@ template<> EIGEN_STRONG_INLINE __m128i ei_pmadd(const __m128i& a, const __m128i&
|
||||
|
||||
template<> EIGEN_STRONG_INLINE __m128 ei_pmin<__m128>(const __m128& a, const __m128& b) { return _mm_min_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE __m128d ei_pmin<__m128d>(const __m128d& a, const __m128d& b) { return _mm_min_pd(a,b); }
|
||||
// FIXME this vectorized min operator is likely to be slower than the standard one
|
||||
template<> EIGEN_STRONG_INLINE __m128i ei_pmin<__m128i>(const __m128i& a, const __m128i& b)
|
||||
{
|
||||
// after some bench, this version *is* faster than a scalar implementation
|
||||
__m128i mask = _mm_cmplt_epi32(a,b);
|
||||
return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE __m128 ei_pmax<__m128>(const __m128& a, const __m128& b) { return _mm_max_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE __m128d ei_pmax<__m128d>(const __m128d& a, const __m128d& b) { return _mm_max_pd(a,b); }
|
||||
// FIXME this vectorized max operator is likely to be slower than the standard one
|
||||
template<> EIGEN_STRONG_INLINE __m128i ei_pmax<__m128i>(const __m128i& a, const __m128i& b)
|
||||
{
|
||||
// after some bench, this version *is* faster than a scalar implementation
|
||||
__m128i mask = _mm_cmpgt_epi32(a,b);
|
||||
return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
|
||||
}
|
||||
@ -216,6 +217,7 @@ template<> EIGEN_STRONG_INLINE __m128i ei_preduxp<__m128i>(const __m128i* vecs)
|
||||
|
||||
// Other reduction functions:
|
||||
|
||||
// mul
|
||||
template<> EIGEN_STRONG_INLINE float ei_predux_mul<__m128>(const __m128& a)
|
||||
{
|
||||
__m128 tmp = _mm_mul_ps(a, _mm_movehl_ps(a,a));
|
||||
@ -227,8 +229,54 @@ template<> EIGEN_STRONG_INLINE double ei_predux_mul<__m128d>(const __m128d& a)
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE int ei_predux_mul<__m128i>(const __m128i& a)
|
||||
{
|
||||
__m128i tmp = ei_pmul(a, _mm_unpackhi_epi64(a,a));
|
||||
return ei_pfirst(tmp) * ei_pfirst(_mm_shuffle_epi32(tmp, 1));
|
||||
// after some experiments, it is seems this is the fastest way to implement it
|
||||
// for GCC (eg., reusing ei_pmul is very slow !)
|
||||
// TODO try to call _mm_mul_epu32 directly
|
||||
EIGEN_ALIGN_128 int aux[4];
|
||||
ei_pstore(aux, a);
|
||||
return (aux[0] * aux[1]) * (aux[2] * aux[3]);;
|
||||
}
|
||||
|
||||
// min
|
||||
template<> EIGEN_STRONG_INLINE float ei_predux_min<__m128>(const __m128& a)
|
||||
{
|
||||
__m128 tmp = _mm_min_ps(a, _mm_movehl_ps(a,a));
|
||||
return ei_pfirst(_mm_min_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE double ei_predux_min<__m128d>(const __m128d& a)
|
||||
{
|
||||
return ei_pfirst(_mm_min_sd(a, _mm_unpackhi_pd(a,a)));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE int ei_predux_min<__m128i>(const __m128i& a)
|
||||
{
|
||||
// after some experiments, it is seems this is the fastest way to implement it
|
||||
// for GCC (eg., it does not like using std::min after the ei_pstore !!)
|
||||
EIGEN_ALIGN_128 int aux[4];
|
||||
ei_pstore(aux, a);
|
||||
register int aux0 = aux[0]<aux[1] ? aux[0] : aux[1];
|
||||
register int aux2 = aux[2]<aux[3] ? aux[2] : aux[3];
|
||||
return aux0<aux2 ? aux0 : aux2;
|
||||
}
|
||||
|
||||
// max
|
||||
template<> EIGEN_STRONG_INLINE float ei_predux_max<__m128>(const __m128& a)
|
||||
{
|
||||
__m128 tmp = _mm_max_ps(a, _mm_movehl_ps(a,a));
|
||||
return ei_pfirst(_mm_max_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE double ei_predux_max<__m128d>(const __m128d& a)
|
||||
{
|
||||
return ei_pfirst(_mm_max_sd(a, _mm_unpackhi_pd(a,a)));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE int ei_predux_max<__m128i>(const __m128i& a)
|
||||
{
|
||||
// after some experiments, it is seems this is the fastest way to implement it
|
||||
// for GCC (eg., it does not like using std::min after the ei_pstore !!)
|
||||
EIGEN_ALIGN_128 int aux[4];
|
||||
ei_pstore(aux, a);
|
||||
register int aux0 = aux[0]>aux[1] ? aux[0] : aux[1];
|
||||
register int aux2 = aux[2]>aux[3] ? aux[2] : aux[3];
|
||||
return aux0>aux2 ? aux0 : aux2;
|
||||
}
|
||||
|
||||
#if (defined __GNUC__)
|
||||
|
@ -111,7 +111,7 @@ ei_add_test(vectorization_logic)
|
||||
ei_add_test(basicstuff)
|
||||
ei_add_test(linearstructure)
|
||||
ei_add_test(cwiseop)
|
||||
ei_add_test(sum)
|
||||
ei_add_test(redux)
|
||||
ei_add_test(product_small)
|
||||
ei_add_test(product_large ${EI_OFLAG})
|
||||
ei_add_test(adjoint)
|
||||
@ -149,7 +149,6 @@ ei_add_test(sparse_basic)
|
||||
ei_add_test(sparse_product)
|
||||
ei_add_test(sparse_solvers " " "${SPARSE_LIBS}")
|
||||
ei_add_test(reverse)
|
||||
ei_add_test(prod)
|
||||
|
||||
# print a summary of the different options
|
||||
message("************************************************************")
|
||||
|
@ -129,6 +129,16 @@ template<typename Scalar> void packetmath()
|
||||
for (int i=0; i<PacketSize; ++i)
|
||||
ref[0] *= data1[i];
|
||||
VERIFY(ei_isApprox(ref[0], ei_predux_mul(ei_pload(data1))) && "ei_predux_mul");
|
||||
|
||||
ref[0] = data1[0];
|
||||
for (int i=0; i<PacketSize; ++i)
|
||||
ref[0] = std::min(ref[0],data1[i]);
|
||||
VERIFY(ei_isApprox(ref[0], ei_predux_min(ei_pload(data1))) && "ei_predux_min");
|
||||
|
||||
ref[0] = data1[0];
|
||||
for (int i=0; i<PacketSize; ++i)
|
||||
ref[0] = std::min(ref[0],data1[i]);
|
||||
VERIFY(ei_isApprox(ref[0], ei_predux_min(ei_pload(data1))) && "ei_predux_max");
|
||||
|
||||
for (int j=0; j<PacketSize; ++j)
|
||||
{
|
||||
|
@ -1,86 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
|
||||
template<typename MatrixType> void matrixProd(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
MatrixType m1 = MatrixType::Random(rows, cols);
|
||||
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).prod(), Scalar(1));
|
||||
VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).prod(), Scalar(1));
|
||||
Scalar x = Scalar(1);
|
||||
for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) x *= m1(i,j);
|
||||
VERIFY_IS_APPROX(m1.prod(), x);
|
||||
}
|
||||
|
||||
template<typename VectorType> void vectorProd(const VectorType& w)
|
||||
{
|
||||
typedef typename VectorType::Scalar Scalar;
|
||||
int size = w.size();
|
||||
|
||||
VectorType v = VectorType::Random(size);
|
||||
for(int i = 1; i < size; i++)
|
||||
{
|
||||
Scalar s = Scalar(1);
|
||||
for(int j = 0; j < i; j++) s *= v[j];
|
||||
VERIFY_IS_APPROX(s, v.start(i).prod());
|
||||
}
|
||||
|
||||
for(int i = 0; i < size-1; i++)
|
||||
{
|
||||
Scalar s = Scalar(1);
|
||||
for(int j = i; j < size; j++) s *= v[j];
|
||||
VERIFY_IS_APPROX(s, v.end(size-i).prod());
|
||||
}
|
||||
|
||||
for(int i = 0; i < size/2; i++)
|
||||
{
|
||||
Scalar s = Scalar(1);
|
||||
for(int j = i; j < size-i; j++) s *= v[j];
|
||||
VERIFY_IS_APPROX(s, v.segment(i, size-2*i).prod());
|
||||
}
|
||||
}
|
||||
|
||||
void test_prod()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( matrixProd(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST( matrixProd(Matrix2f()) );
|
||||
CALL_SUBTEST( matrixProd(Matrix4d()) );
|
||||
CALL_SUBTEST( matrixProd(MatrixXcf(3, 3)) );
|
||||
CALL_SUBTEST( matrixProd(MatrixXf(8, 12)) );
|
||||
CALL_SUBTEST( matrixProd(MatrixXi(8, 12)) );
|
||||
}
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( vectorProd(VectorXf(5)) );
|
||||
CALL_SUBTEST( vectorProd(VectorXd(10)) );
|
||||
CALL_SUBTEST( vectorProd(VectorXf(33)) );
|
||||
}
|
||||
}
|
127
test/redux.cpp
Normal file
127
test/redux.cpp
Normal file
@ -0,0 +1,127 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
|
||||
template<typename MatrixType> void matrixRedux(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
MatrixType m1 = MatrixType::Random(rows, cols);
|
||||
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1));
|
||||
VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy
|
||||
Scalar s(0), p(1), minc(ei_real(m1.coeff(0))), maxc(ei_real(m1.coeff(0)));
|
||||
for(int j = 0; j < cols; j++)
|
||||
for(int i = 0; i < rows; i++)
|
||||
{
|
||||
s += m1(i,j);
|
||||
p *= m1(i,j);
|
||||
minc = std::min(ei_real(minc), ei_real(m1(i,j)));
|
||||
maxc = std::max(ei_real(maxc), ei_real(m1(i,j)));
|
||||
}
|
||||
VERIFY_IS_APPROX(m1.sum(), s);
|
||||
VERIFY_IS_APPROX(m1.prod(), p);
|
||||
VERIFY_IS_APPROX(m1.real().minCoeff(), ei_real(minc));
|
||||
VERIFY_IS_APPROX(m1.real().maxCoeff(), ei_real(maxc));
|
||||
}
|
||||
|
||||
template<typename VectorType> void vectorRedux(const VectorType& w)
|
||||
{
|
||||
typedef typename VectorType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
int size = w.size();
|
||||
|
||||
VectorType v = VectorType::Random(size);
|
||||
for(int i = 1; i < size; i++)
|
||||
{
|
||||
Scalar s(0), p(1);
|
||||
RealScalar minc(ei_real(v.coeff(0))), maxc(ei_real(v.coeff(0)));
|
||||
for(int j = 0; j < i; j++)
|
||||
{
|
||||
s += v[j];
|
||||
p *= v[j];
|
||||
minc = std::min(minc, ei_real(v[j]));
|
||||
maxc = std::max(maxc, ei_real(v[j]));
|
||||
}
|
||||
VERIFY_IS_APPROX(s, v.start(i).sum());
|
||||
VERIFY_IS_APPROX(p, v.start(i).prod());
|
||||
VERIFY_IS_APPROX(minc, v.real().start(i).minCoeff());
|
||||
VERIFY_IS_APPROX(maxc, v.real().start(i).maxCoeff());
|
||||
}
|
||||
|
||||
for(int i = 0; i < size-1; i++)
|
||||
{
|
||||
Scalar s(0), p(1);
|
||||
RealScalar minc(ei_real(v.coeff(i))), maxc(ei_real(v.coeff(i)));
|
||||
for(int j = i; j < size; j++)
|
||||
{
|
||||
s += v[j];
|
||||
p *= v[j];
|
||||
minc = std::min(minc, ei_real(v[j]));
|
||||
maxc = std::max(maxc, ei_real(v[j]));
|
||||
}
|
||||
VERIFY_IS_APPROX(s, v.end(size-i).sum());
|
||||
VERIFY_IS_APPROX(p, v.end(size-i).prod());
|
||||
VERIFY_IS_APPROX(minc, v.real().end(size-i).minCoeff());
|
||||
VERIFY_IS_APPROX(maxc, v.real().end(size-i).maxCoeff());
|
||||
}
|
||||
|
||||
for(int i = 0; i < size/2; i++)
|
||||
{
|
||||
Scalar s(0), p(1);
|
||||
RealScalar minc(ei_real(v.coeff(i))), maxc(ei_real(v.coeff(i)));
|
||||
for(int j = i; j < size-i; j++)
|
||||
{
|
||||
s += v[j];
|
||||
p *= v[j];
|
||||
minc = std::min(minc, ei_real(v[j]));
|
||||
maxc = std::max(maxc, ei_real(v[j]));
|
||||
}
|
||||
VERIFY_IS_APPROX(s, v.segment(i, size-2*i).sum());
|
||||
VERIFY_IS_APPROX(p, v.segment(i, size-2*i).prod());
|
||||
VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff());
|
||||
VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff());
|
||||
}
|
||||
}
|
||||
|
||||
void test_redux()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( matrixRedux(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST( matrixRedux(Matrix2f()) );
|
||||
CALL_SUBTEST( matrixRedux(Matrix4d()) );
|
||||
CALL_SUBTEST( matrixRedux(MatrixXcf(3, 3)) );
|
||||
CALL_SUBTEST( matrixRedux(MatrixXd(8, 12)) );
|
||||
CALL_SUBTEST( matrixRedux(MatrixXi(8, 12)) );
|
||||
}
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( vectorRedux(VectorXf(5)) );
|
||||
CALL_SUBTEST( vectorRedux(VectorXd(10)) );
|
||||
CALL_SUBTEST( vectorRedux(VectorXf(33)) );
|
||||
}
|
||||
}
|
86
test/sum.cpp
86
test/sum.cpp
@ -1,86 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
|
||||
template<typename MatrixType> void matrixSum(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
MatrixType m1 = MatrixType::Random(rows, cols);
|
||||
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1));
|
||||
VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy
|
||||
Scalar x = Scalar(0);
|
||||
for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) x += m1(i,j);
|
||||
VERIFY_IS_APPROX(m1.sum(), x);
|
||||
}
|
||||
|
||||
template<typename VectorType> void vectorSum(const VectorType& w)
|
||||
{
|
||||
typedef typename VectorType::Scalar Scalar;
|
||||
int size = w.size();
|
||||
|
||||
VectorType v = VectorType::Random(size);
|
||||
for(int i = 1; i < size; i++)
|
||||
{
|
||||
Scalar s = Scalar(0);
|
||||
for(int j = 0; j < i; j++) s += v[j];
|
||||
VERIFY_IS_APPROX(s, v.start(i).sum());
|
||||
}
|
||||
|
||||
for(int i = 0; i < size-1; i++)
|
||||
{
|
||||
Scalar s = Scalar(0);
|
||||
for(int j = i; j < size; j++) s += v[j];
|
||||
VERIFY_IS_APPROX(s, v.end(size-i).sum());
|
||||
}
|
||||
|
||||
for(int i = 0; i < size/2; i++)
|
||||
{
|
||||
Scalar s = Scalar(0);
|
||||
for(int j = i; j < size-i; j++) s += v[j];
|
||||
VERIFY_IS_APPROX(s, v.segment(i, size-2*i).sum());
|
||||
}
|
||||
}
|
||||
|
||||
void test_sum()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( matrixSum(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST( matrixSum(Matrix2f()) );
|
||||
CALL_SUBTEST( matrixSum(Matrix4d()) );
|
||||
CALL_SUBTEST( matrixSum(MatrixXcf(3, 3)) );
|
||||
CALL_SUBTEST( matrixSum(MatrixXf(8, 12)) );
|
||||
CALL_SUBTEST( matrixSum(MatrixXi(8, 12)) );
|
||||
}
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( vectorSum(VectorXf(5)) );
|
||||
CALL_SUBTEST( vectorSum(VectorXd(10)) );
|
||||
CALL_SUBTEST( vectorSum(VectorXf(33)) );
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user