implement GBMV

This commit is contained in:
Gael Guennebaud 2011-02-02 11:39:13 +01:00
parent d5f6819761
commit 52e0a44034
6 changed files with 64 additions and 1255 deletions

View File

@ -19,7 +19,7 @@ add_custom_target(blas)
set(EigenBlas_SRCS single.cpp double.cpp complex_single.cpp complex_double.cpp xerbla.cpp set(EigenBlas_SRCS single.cpp double.cpp complex_single.cpp complex_double.cpp xerbla.cpp
srotm.f srotmg.f drotm.f drotmg.f srotm.f srotmg.f drotm.f drotmg.f
lsame.f cgbmv.f chpr2.f ctbsv.f dspmv.f dtbmv.f dtpsv.f ssbmv.f sspr.f stpmv.f zgbmv.f zhpr2.f ztbsv.f chbmv.f chpr.f ctpmv.f dgbmv.f dspr2.f dtbsv.f sspmv.f stbmv.f stpsv.f zhbmv.f zhpr.f ztpmv.f chpmv.f ctbmv.f ctpsv.f dsbmv.f dspr.f dtpmv.f sgbmv.f sspr2.f stbsv.f zhpmv.f ztbmv.f ztpsv.f lsame.f chpr2.f ctbsv.f dspmv.f dtbmv.f dtpsv.f ssbmv.f sspr.f stpmv.f zhpr2.f ztbsv.f chbmv.f chpr.f ctpmv.f dspr2.f dtbsv.f sspmv.f stbmv.f stpsv.f zhbmv.f zhpr.f ztpmv.f chpmv.f ctbmv.f ctpsv.f dsbmv.f dspr.f dtpmv.f sspr2.f stbsv.f zhpmv.f ztbmv.f ztpsv.f
) )
add_library(eigen_blas_static ${EigenBlas_SRCS}) add_library(eigen_blas_static ${EigenBlas_SRCS})

View File

@ -1,322 +0,0 @@
SUBROUTINE CGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
* .. Scalar Arguments ..
COMPLEX ALPHA,BETA
INTEGER INCX,INCY,KL,KU,LDA,M,N
CHARACTER TRANS
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
* Purpose
* =======
*
* CGBMV performs one of the matrix-vector operations
*
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
*
* y := alpha*conjg( A' )*x + beta*y,
*
* where alpha and beta are scalars, x and y are vectors and A is an
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
*
* Arguments
* ==========
*
* TRANS - CHARACTER*1.
* On entry, TRANS specifies the operation to be performed as
* follows:
*
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
*
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
*
* TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
*
* Unchanged on exit.
*
* M - INTEGER.
* On entry, M specifies the number of rows of the matrix A.
* M must be at least zero.
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the number of columns of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* KL - INTEGER.
* On entry, KL specifies the number of sub-diagonals of the
* matrix A. KL must satisfy 0 .le. KL.
* Unchanged on exit.
*
* KU - INTEGER.
* On entry, KU specifies the number of super-diagonals of the
* matrix A. KU must satisfy 0 .le. KU.
* Unchanged on exit.
*
* ALPHA - COMPLEX .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* A - COMPLEX array of DIMENSION ( LDA, n ).
* Before entry, the leading ( kl + ku + 1 ) by n part of the
* array A must contain the matrix of coefficients, supplied
* column by column, with the leading diagonal of the matrix in
* row ( ku + 1 ) of the array, the first super-diagonal
* starting at position 2 in row ku, the first sub-diagonal
* starting at position 1 in row ( ku + 2 ), and so on.
* Elements in the array A that do not correspond to elements
* in the band matrix (such as the top left ku by ku triangle)
* are not referenced.
* The following program segment will transfer a band matrix
* from conventional full matrix storage to band storage:
*
* DO 20, J = 1, N
* K = KU + 1 - J
* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
* A( K + I, J ) = matrix( I, J )
* 10 CONTINUE
* 20 CONTINUE
*
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* ( kl + ku + 1 ).
* Unchanged on exit.
*
* X - COMPLEX array of DIMENSION at least
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
* and at least
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
* Before entry, the incremented array X must contain the
* vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* BETA - COMPLEX .
* On entry, BETA specifies the scalar beta. When BETA is
* supplied as zero then Y need not be set on input.
* Unchanged on exit.
*
* Y - COMPLEX array of DIMENSION at least
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
* and at least
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
* Before entry, the incremented array Y must contain the
* vector y. On exit, Y is overwritten by the updated vector y.
*
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER (ONE= (1.0E+0,0.0E+0))
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP
INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
LOGICAL NOCONJ
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,MAX,MIN
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ .NOT.LSAME(TRANS,'C')) THEN
INFO = 1
ELSE IF (M.LT.0) THEN
INFO = 2
ELSE IF (N.LT.0) THEN
INFO = 3
ELSE IF (KL.LT.0) THEN
INFO = 4
ELSE IF (KU.LT.0) THEN
INFO = 5
ELSE IF (LDA.LT. (KL+KU+1)) THEN
INFO = 8
ELSE IF (INCX.EQ.0) THEN
INFO = 10
ELSE IF (INCY.EQ.0) THEN
INFO = 13
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CGBMV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
NOCONJ = LSAME(TRANS,'T')
*
* Set LENX and LENY, the lengths of the vectors x and y, and set
* up the start points in X and Y.
*
IF (LSAME(TRANS,'N')) THEN
LENX = N
LENY = M
ELSE
LENX = M
LENY = N
END IF
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (LENX-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (LENY-1)*INCY
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the band part of A.
*
* First form y := beta*y.
*
IF (BETA.NE.ONE) THEN
IF (INCY.EQ.1) THEN
IF (BETA.EQ.ZERO) THEN
DO 10 I = 1,LENY
Y(I) = ZERO
10 CONTINUE
ELSE
DO 20 I = 1,LENY
Y(I) = BETA*Y(I)
20 CONTINUE
END IF
ELSE
IY = KY
IF (BETA.EQ.ZERO) THEN
DO 30 I = 1,LENY
Y(IY) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40 I = 1,LENY
Y(IY) = BETA*Y(IY)
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF (ALPHA.EQ.ZERO) RETURN
KUP1 = KU + 1
IF (LSAME(TRANS,'N')) THEN
*
* Form y := alpha*A*x + y.
*
JX = KX
IF (INCY.EQ.1) THEN
DO 60 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*X(JX)
K = KUP1 - J
DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
Y(I) = Y(I) + TEMP*A(K+I,J)
50 CONTINUE
END IF
JX = JX + INCX
60 CONTINUE
ELSE
DO 80 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*X(JX)
IY = KY
K = KUP1 - J
DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
Y(IY) = Y(IY) + TEMP*A(K+I,J)
IY = IY + INCY
70 CONTINUE
END IF
JX = JX + INCX
IF (J.GT.KU) KY = KY + INCY
80 CONTINUE
END IF
ELSE
*
* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y.
*
JY = KY
IF (INCX.EQ.1) THEN
DO 110 J = 1,N
TEMP = ZERO
K = KUP1 - J
IF (NOCONJ) THEN
DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + A(K+I,J)*X(I)
90 CONTINUE
ELSE
DO 100 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + CONJG(A(K+I,J))*X(I)
100 CONTINUE
END IF
Y(JY) = Y(JY) + ALPHA*TEMP
JY = JY + INCY
110 CONTINUE
ELSE
DO 140 J = 1,N
TEMP = ZERO
IX = KX
K = KUP1 - J
IF (NOCONJ) THEN
DO 120 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + A(K+I,J)*X(IX)
IX = IX + INCX
120 CONTINUE
ELSE
DO 130 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + CONJG(A(K+I,J))*X(IX)
IX = IX + INCX
130 CONTINUE
END IF
Y(JY) = Y(JY) + ALPHA*TEMP
JY = JY + INCY
IF (J.GT.KU) KX = KX + INCX
140 CONTINUE
END IF
END IF
*
RETURN
*
* End of CGBMV .
*
END

View File

@ -1,301 +0,0 @@
SUBROUTINE DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
* .. Scalar Arguments ..
DOUBLE PRECISION ALPHA,BETA
INTEGER INCX,INCY,KL,KU,LDA,M,N
CHARACTER TRANS
* ..
* .. Array Arguments ..
DOUBLE PRECISION A(LDA,*),X(*),Y(*)
* ..
*
* Purpose
* =======
*
* DGBMV performs one of the matrix-vector operations
*
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
*
* where alpha and beta are scalars, x and y are vectors and A is an
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
*
* Arguments
* ==========
*
* TRANS - CHARACTER*1.
* On entry, TRANS specifies the operation to be performed as
* follows:
*
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
*
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
*
* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
*
* Unchanged on exit.
*
* M - INTEGER.
* On entry, M specifies the number of rows of the matrix A.
* M must be at least zero.
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the number of columns of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* KL - INTEGER.
* On entry, KL specifies the number of sub-diagonals of the
* matrix A. KL must satisfy 0 .le. KL.
* Unchanged on exit.
*
* KU - INTEGER.
* On entry, KU specifies the number of super-diagonals of the
* matrix A. KU must satisfy 0 .le. KU.
* Unchanged on exit.
*
* ALPHA - DOUBLE PRECISION.
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
* Before entry, the leading ( kl + ku + 1 ) by n part of the
* array A must contain the matrix of coefficients, supplied
* column by column, with the leading diagonal of the matrix in
* row ( ku + 1 ) of the array, the first super-diagonal
* starting at position 2 in row ku, the first sub-diagonal
* starting at position 1 in row ( ku + 2 ), and so on.
* Elements in the array A that do not correspond to elements
* in the band matrix (such as the top left ku by ku triangle)
* are not referenced.
* The following program segment will transfer a band matrix
* from conventional full matrix storage to band storage:
*
* DO 20, J = 1, N
* K = KU + 1 - J
* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
* A( K + I, J ) = matrix( I, J )
* 10 CONTINUE
* 20 CONTINUE
*
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* ( kl + ku + 1 ).
* Unchanged on exit.
*
* X - DOUBLE PRECISION array of DIMENSION at least
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
* and at least
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
* Before entry, the incremented array X must contain the
* vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* BETA - DOUBLE PRECISION.
* On entry, BETA specifies the scalar beta. When BETA is
* supplied as zero then Y need not be set on input.
* Unchanged on exit.
*
* Y - DOUBLE PRECISION array of DIMENSION at least
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
* and at least
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
* Before entry, the incremented array Y must contain the
* vector y. On exit, Y is overwritten by the updated vector y.
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE,ZERO
PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
* ..
* .. Local Scalars ..
DOUBLE PRECISION TEMP
INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX,MIN
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ .NOT.LSAME(TRANS,'C')) THEN
INFO = 1
ELSE IF (M.LT.0) THEN
INFO = 2
ELSE IF (N.LT.0) THEN
INFO = 3
ELSE IF (KL.LT.0) THEN
INFO = 4
ELSE IF (KU.LT.0) THEN
INFO = 5
ELSE IF (LDA.LT. (KL+KU+1)) THEN
INFO = 8
ELSE IF (INCX.EQ.0) THEN
INFO = 10
ELSE IF (INCY.EQ.0) THEN
INFO = 13
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DGBMV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
* Set LENX and LENY, the lengths of the vectors x and y, and set
* up the start points in X and Y.
*
IF (LSAME(TRANS,'N')) THEN
LENX = N
LENY = M
ELSE
LENX = M
LENY = N
END IF
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (LENX-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (LENY-1)*INCY
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the band part of A.
*
* First form y := beta*y.
*
IF (BETA.NE.ONE) THEN
IF (INCY.EQ.1) THEN
IF (BETA.EQ.ZERO) THEN
DO 10 I = 1,LENY
Y(I) = ZERO
10 CONTINUE
ELSE
DO 20 I = 1,LENY
Y(I) = BETA*Y(I)
20 CONTINUE
END IF
ELSE
IY = KY
IF (BETA.EQ.ZERO) THEN
DO 30 I = 1,LENY
Y(IY) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40 I = 1,LENY
Y(IY) = BETA*Y(IY)
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF (ALPHA.EQ.ZERO) RETURN
KUP1 = KU + 1
IF (LSAME(TRANS,'N')) THEN
*
* Form y := alpha*A*x + y.
*
JX = KX
IF (INCY.EQ.1) THEN
DO 60 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*X(JX)
K = KUP1 - J
DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
Y(I) = Y(I) + TEMP*A(K+I,J)
50 CONTINUE
END IF
JX = JX + INCX
60 CONTINUE
ELSE
DO 80 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*X(JX)
IY = KY
K = KUP1 - J
DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
Y(IY) = Y(IY) + TEMP*A(K+I,J)
IY = IY + INCY
70 CONTINUE
END IF
JX = JX + INCX
IF (J.GT.KU) KY = KY + INCY
80 CONTINUE
END IF
ELSE
*
* Form y := alpha*A'*x + y.
*
JY = KY
IF (INCX.EQ.1) THEN
DO 100 J = 1,N
TEMP = ZERO
K = KUP1 - J
DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + A(K+I,J)*X(I)
90 CONTINUE
Y(JY) = Y(JY) + ALPHA*TEMP
JY = JY + INCY
100 CONTINUE
ELSE
DO 120 J = 1,N
TEMP = ZERO
IX = KX
K = KUP1 - J
DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + A(K+I,J)*X(IX)
IX = IX + INCX
110 CONTINUE
Y(JY) = Y(JY) + ALPHA*TEMP
JY = JY + INCY
IF (J.GT.KU) KX = KX + INCX
120 CONTINUE
END IF
END IF
*
RETURN
*
* End of DGBMV .
*
END

View File

@ -202,21 +202,76 @@ int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar
return 0; return 0;
} }
/** DGBMV performs one of the matrix-vector operations /** GBMV performs one of the matrix-vector operations
* *
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
* *
* where alpha and beta are scalars, x and y are vectors and A is an * where alpha and beta are scalars, x and y are vectors and A is an
* m by n band matrix, with kl sub-diagonals and ku super-diagonals. * m by n band matrix, with kl sub-diagonals and ku super-diagonals.
*/ */
// int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *alpha, RealScalar *a, int *lda, int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *palpha, RealScalar *pa, int *lda,
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
// { {
// return 1; Scalar* a = reinterpret_cast<Scalar*>(pa);
// } Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
int coeff_rows = *kl+*ku+1;
int info = 0;
if(OP(*trans)==INVALID) info = 1;
else if(*m<0) info = 2;
else if(*n<0) info = 3;
else if(*kl<0) info = 4;
else if(*ku<0) info = 5;
else if(*lda<coeff_rows) info = 8;
else if(*incx==0) info = 10;
else if(*incy==0) info = 13;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"GBMV ",&info,6);
/** DTBMV performs one of the matrix-vector operations if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
return 0;
int actual_m = *m;
int actual_n = *n;
if(OP(*trans)!=NOTR)
std::swap(actual_m,actual_n);
Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
Scalar* actual_y = get_compact_vector(y,actual_m,*incy);
if(beta!=Scalar(1))
{
if(beta==Scalar(0)) vector(actual_y, actual_m).setZero();
else vector(actual_y, actual_m) *= beta;
}
MatrixType mat_coeffs(a,coeff_rows,*n,*lda);
int nb = std::min(*n,(*m)+(*ku));
for(int j=0; j<nb; ++j)
{
int start = std::max(0,j - *ku);
int end = std::min((*m)-1,j + *kl);
int len = end - start + 1;
int offset = (*ku) - j + start;
if(OP(*trans)==NOTR)
vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len);
else if(OP(*trans)==TR)
actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value();
else
actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * vector(actual_x+start,len) ).value();
}
if(actual_x!=x) delete[] actual_x;
if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy);
return 0;
}
/** TBMV performs one of the matrix-vector operations
* *
* x := A*x, or x := A'*x, * x := A*x, or x := A'*x,
* *

View File

@ -1,301 +0,0 @@
SUBROUTINE SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
* .. Scalar Arguments ..
REAL ALPHA,BETA
INTEGER INCX,INCY,KL,KU,LDA,M,N
CHARACTER TRANS
* ..
* .. Array Arguments ..
REAL A(LDA,*),X(*),Y(*)
* ..
*
* Purpose
* =======
*
* SGBMV performs one of the matrix-vector operations
*
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
*
* where alpha and beta are scalars, x and y are vectors and A is an
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
*
* Arguments
* ==========
*
* TRANS - CHARACTER*1.
* On entry, TRANS specifies the operation to be performed as
* follows:
*
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
*
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
*
* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
*
* Unchanged on exit.
*
* M - INTEGER.
* On entry, M specifies the number of rows of the matrix A.
* M must be at least zero.
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the number of columns of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* KL - INTEGER.
* On entry, KL specifies the number of sub-diagonals of the
* matrix A. KL must satisfy 0 .le. KL.
* Unchanged on exit.
*
* KU - INTEGER.
* On entry, KU specifies the number of super-diagonals of the
* matrix A. KU must satisfy 0 .le. KU.
* Unchanged on exit.
*
* ALPHA - REAL .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* A - REAL array of DIMENSION ( LDA, n ).
* Before entry, the leading ( kl + ku + 1 ) by n part of the
* array A must contain the matrix of coefficients, supplied
* column by column, with the leading diagonal of the matrix in
* row ( ku + 1 ) of the array, the first super-diagonal
* starting at position 2 in row ku, the first sub-diagonal
* starting at position 1 in row ( ku + 2 ), and so on.
* Elements in the array A that do not correspond to elements
* in the band matrix (such as the top left ku by ku triangle)
* are not referenced.
* The following program segment will transfer a band matrix
* from conventional full matrix storage to band storage:
*
* DO 20, J = 1, N
* K = KU + 1 - J
* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
* A( K + I, J ) = matrix( I, J )
* 10 CONTINUE
* 20 CONTINUE
*
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* ( kl + ku + 1 ).
* Unchanged on exit.
*
* X - REAL array of DIMENSION at least
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
* and at least
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
* Before entry, the incremented array X must contain the
* vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* BETA - REAL .
* On entry, BETA specifies the scalar beta. When BETA is
* supplied as zero then Y need not be set on input.
* Unchanged on exit.
*
* Y - REAL array of DIMENSION at least
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
* and at least
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
* Before entry, the incremented array Y must contain the
* vector y. On exit, Y is overwritten by the updated vector y.
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
REAL ONE,ZERO
PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
* ..
* .. Local Scalars ..
REAL TEMP
INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX,MIN
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ .NOT.LSAME(TRANS,'C')) THEN
INFO = 1
ELSE IF (M.LT.0) THEN
INFO = 2
ELSE IF (N.LT.0) THEN
INFO = 3
ELSE IF (KL.LT.0) THEN
INFO = 4
ELSE IF (KU.LT.0) THEN
INFO = 5
ELSE IF (LDA.LT. (KL+KU+1)) THEN
INFO = 8
ELSE IF (INCX.EQ.0) THEN
INFO = 10
ELSE IF (INCY.EQ.0) THEN
INFO = 13
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('SGBMV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
* Set LENX and LENY, the lengths of the vectors x and y, and set
* up the start points in X and Y.
*
IF (LSAME(TRANS,'N')) THEN
LENX = N
LENY = M
ELSE
LENX = M
LENY = N
END IF
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (LENX-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (LENY-1)*INCY
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the band part of A.
*
* First form y := beta*y.
*
IF (BETA.NE.ONE) THEN
IF (INCY.EQ.1) THEN
IF (BETA.EQ.ZERO) THEN
DO 10 I = 1,LENY
Y(I) = ZERO
10 CONTINUE
ELSE
DO 20 I = 1,LENY
Y(I) = BETA*Y(I)
20 CONTINUE
END IF
ELSE
IY = KY
IF (BETA.EQ.ZERO) THEN
DO 30 I = 1,LENY
Y(IY) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40 I = 1,LENY
Y(IY) = BETA*Y(IY)
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF (ALPHA.EQ.ZERO) RETURN
KUP1 = KU + 1
IF (LSAME(TRANS,'N')) THEN
*
* Form y := alpha*A*x + y.
*
JX = KX
IF (INCY.EQ.1) THEN
DO 60 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*X(JX)
K = KUP1 - J
DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
Y(I) = Y(I) + TEMP*A(K+I,J)
50 CONTINUE
END IF
JX = JX + INCX
60 CONTINUE
ELSE
DO 80 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*X(JX)
IY = KY
K = KUP1 - J
DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
Y(IY) = Y(IY) + TEMP*A(K+I,J)
IY = IY + INCY
70 CONTINUE
END IF
JX = JX + INCX
IF (J.GT.KU) KY = KY + INCY
80 CONTINUE
END IF
ELSE
*
* Form y := alpha*A'*x + y.
*
JY = KY
IF (INCX.EQ.1) THEN
DO 100 J = 1,N
TEMP = ZERO
K = KUP1 - J
DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + A(K+I,J)*X(I)
90 CONTINUE
Y(JY) = Y(JY) + ALPHA*TEMP
JY = JY + INCY
100 CONTINUE
ELSE
DO 120 J = 1,N
TEMP = ZERO
IX = KX
K = KUP1 - J
DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + A(K+I,J)*X(IX)
IX = IX + INCX
110 CONTINUE
Y(JY) = Y(JY) + ALPHA*TEMP
JY = JY + INCY
IF (J.GT.KU) KX = KX + INCX
120 CONTINUE
END IF
END IF
*
RETURN
*
* End of SGBMV .
*
END

View File

@ -1,322 +0,0 @@
SUBROUTINE ZGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
* .. Scalar Arguments ..
DOUBLE COMPLEX ALPHA,BETA
INTEGER INCX,INCY,KL,KU,LDA,M,N
CHARACTER TRANS
* ..
* .. Array Arguments ..
DOUBLE COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
* Purpose
* =======
*
* ZGBMV performs one of the matrix-vector operations
*
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
*
* y := alpha*conjg( A' )*x + beta*y,
*
* where alpha and beta are scalars, x and y are vectors and A is an
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
*
* Arguments
* ==========
*
* TRANS - CHARACTER*1.
* On entry, TRANS specifies the operation to be performed as
* follows:
*
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
*
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
*
* TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
*
* Unchanged on exit.
*
* M - INTEGER.
* On entry, M specifies the number of rows of the matrix A.
* M must be at least zero.
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the number of columns of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* KL - INTEGER.
* On entry, KL specifies the number of sub-diagonals of the
* matrix A. KL must satisfy 0 .le. KL.
* Unchanged on exit.
*
* KU - INTEGER.
* On entry, KU specifies the number of super-diagonals of the
* matrix A. KU must satisfy 0 .le. KU.
* Unchanged on exit.
*
* ALPHA - COMPLEX*16 .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* A - COMPLEX*16 array of DIMENSION ( LDA, n ).
* Before entry, the leading ( kl + ku + 1 ) by n part of the
* array A must contain the matrix of coefficients, supplied
* column by column, with the leading diagonal of the matrix in
* row ( ku + 1 ) of the array, the first super-diagonal
* starting at position 2 in row ku, the first sub-diagonal
* starting at position 1 in row ( ku + 2 ), and so on.
* Elements in the array A that do not correspond to elements
* in the band matrix (such as the top left ku by ku triangle)
* are not referenced.
* The following program segment will transfer a band matrix
* from conventional full matrix storage to band storage:
*
* DO 20, J = 1, N
* K = KU + 1 - J
* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
* A( K + I, J ) = matrix( I, J )
* 10 CONTINUE
* 20 CONTINUE
*
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* ( kl + ku + 1 ).
* Unchanged on exit.
*
* X - COMPLEX*16 array of DIMENSION at least
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
* and at least
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
* Before entry, the incremented array X must contain the
* vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* BETA - COMPLEX*16 .
* On entry, BETA specifies the scalar beta. When BETA is
* supplied as zero then Y need not be set on input.
* Unchanged on exit.
*
* Y - COMPLEX*16 array of DIMENSION at least
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
* and at least
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
* Before entry, the incremented array Y must contain the
* vector y. On exit, Y is overwritten by the updated vector y.
*
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE COMPLEX ONE
PARAMETER (ONE= (1.0D+0,0.0D+0))
DOUBLE COMPLEX ZERO
PARAMETER (ZERO= (0.0D+0,0.0D+0))
* ..
* .. Local Scalars ..
DOUBLE COMPLEX TEMP
INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
LOGICAL NOCONJ
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DCONJG,MAX,MIN
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ .NOT.LSAME(TRANS,'C')) THEN
INFO = 1
ELSE IF (M.LT.0) THEN
INFO = 2
ELSE IF (N.LT.0) THEN
INFO = 3
ELSE IF (KL.LT.0) THEN
INFO = 4
ELSE IF (KU.LT.0) THEN
INFO = 5
ELSE IF (LDA.LT. (KL+KU+1)) THEN
INFO = 8
ELSE IF (INCX.EQ.0) THEN
INFO = 10
ELSE IF (INCY.EQ.0) THEN
INFO = 13
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('ZGBMV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
NOCONJ = LSAME(TRANS,'T')
*
* Set LENX and LENY, the lengths of the vectors x and y, and set
* up the start points in X and Y.
*
IF (LSAME(TRANS,'N')) THEN
LENX = N
LENY = M
ELSE
LENX = M
LENY = N
END IF
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (LENX-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (LENY-1)*INCY
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the band part of A.
*
* First form y := beta*y.
*
IF (BETA.NE.ONE) THEN
IF (INCY.EQ.1) THEN
IF (BETA.EQ.ZERO) THEN
DO 10 I = 1,LENY
Y(I) = ZERO
10 CONTINUE
ELSE
DO 20 I = 1,LENY
Y(I) = BETA*Y(I)
20 CONTINUE
END IF
ELSE
IY = KY
IF (BETA.EQ.ZERO) THEN
DO 30 I = 1,LENY
Y(IY) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40 I = 1,LENY
Y(IY) = BETA*Y(IY)
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF (ALPHA.EQ.ZERO) RETURN
KUP1 = KU + 1
IF (LSAME(TRANS,'N')) THEN
*
* Form y := alpha*A*x + y.
*
JX = KX
IF (INCY.EQ.1) THEN
DO 60 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*X(JX)
K = KUP1 - J
DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
Y(I) = Y(I) + TEMP*A(K+I,J)
50 CONTINUE
END IF
JX = JX + INCX
60 CONTINUE
ELSE
DO 80 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*X(JX)
IY = KY
K = KUP1 - J
DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
Y(IY) = Y(IY) + TEMP*A(K+I,J)
IY = IY + INCY
70 CONTINUE
END IF
JX = JX + INCX
IF (J.GT.KU) KY = KY + INCY
80 CONTINUE
END IF
ELSE
*
* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y.
*
JY = KY
IF (INCX.EQ.1) THEN
DO 110 J = 1,N
TEMP = ZERO
K = KUP1 - J
IF (NOCONJ) THEN
DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + A(K+I,J)*X(I)
90 CONTINUE
ELSE
DO 100 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + DCONJG(A(K+I,J))*X(I)
100 CONTINUE
END IF
Y(JY) = Y(JY) + ALPHA*TEMP
JY = JY + INCY
110 CONTINUE
ELSE
DO 140 J = 1,N
TEMP = ZERO
IX = KX
K = KUP1 - J
IF (NOCONJ) THEN
DO 120 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + A(K+I,J)*X(IX)
IX = IX + INCX
120 CONTINUE
ELSE
DO 130 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + DCONJG(A(K+I,J))*X(IX)
IX = IX + INCX
130 CONTINUE
END IF
Y(JY) = Y(JY) + ALPHA*TEMP
JY = JY + INCY
IF (J.GT.KU) KX = KX + INCX
140 CONTINUE
END IF
END IF
*
RETURN
*
* End of ZGBMV .
*
END