mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-12 09:23:12 +08:00
implement GBMV
This commit is contained in:
parent
d5f6819761
commit
52e0a44034
@ -19,7 +19,7 @@ add_custom_target(blas)
|
||||
|
||||
set(EigenBlas_SRCS single.cpp double.cpp complex_single.cpp complex_double.cpp xerbla.cpp
|
||||
srotm.f srotmg.f drotm.f drotmg.f
|
||||
lsame.f cgbmv.f chpr2.f ctbsv.f dspmv.f dtbmv.f dtpsv.f ssbmv.f sspr.f stpmv.f zgbmv.f zhpr2.f ztbsv.f chbmv.f chpr.f ctpmv.f dgbmv.f dspr2.f dtbsv.f sspmv.f stbmv.f stpsv.f zhbmv.f zhpr.f ztpmv.f chpmv.f ctbmv.f ctpsv.f dsbmv.f dspr.f dtpmv.f sgbmv.f sspr2.f stbsv.f zhpmv.f ztbmv.f ztpsv.f
|
||||
lsame.f chpr2.f ctbsv.f dspmv.f dtbmv.f dtpsv.f ssbmv.f sspr.f stpmv.f zhpr2.f ztbsv.f chbmv.f chpr.f ctpmv.f dspr2.f dtbsv.f sspmv.f stbmv.f stpsv.f zhbmv.f zhpr.f ztpmv.f chpmv.f ctbmv.f ctpsv.f dsbmv.f dspr.f dtpmv.f sspr2.f stbsv.f zhpmv.f ztbmv.f ztpsv.f
|
||||
)
|
||||
|
||||
add_library(eigen_blas_static ${EigenBlas_SRCS})
|
||||
|
322
blas/cgbmv.f
322
blas/cgbmv.f
@ -1,322 +0,0 @@
|
||||
SUBROUTINE CGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
||||
* .. Scalar Arguments ..
|
||||
COMPLEX ALPHA,BETA
|
||||
INTEGER INCX,INCY,KL,KU,LDA,M,N
|
||||
CHARACTER TRANS
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
COMPLEX A(LDA,*),X(*),Y(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* CGBMV performs one of the matrix-vector operations
|
||||
*
|
||||
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
|
||||
*
|
||||
* y := alpha*conjg( A' )*x + beta*y,
|
||||
*
|
||||
* where alpha and beta are scalars, x and y are vectors and A is an
|
||||
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* TRANS - CHARACTER*1.
|
||||
* On entry, TRANS specifies the operation to be performed as
|
||||
* follows:
|
||||
*
|
||||
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
|
||||
*
|
||||
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
|
||||
*
|
||||
* TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* M - INTEGER.
|
||||
* On entry, M specifies the number of rows of the matrix A.
|
||||
* M must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the number of columns of the matrix A.
|
||||
* N must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* KL - INTEGER.
|
||||
* On entry, KL specifies the number of sub-diagonals of the
|
||||
* matrix A. KL must satisfy 0 .le. KL.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* KU - INTEGER.
|
||||
* On entry, KU specifies the number of super-diagonals of the
|
||||
* matrix A. KU must satisfy 0 .le. KU.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - COMPLEX .
|
||||
* On entry, ALPHA specifies the scalar alpha.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* A - COMPLEX array of DIMENSION ( LDA, n ).
|
||||
* Before entry, the leading ( kl + ku + 1 ) by n part of the
|
||||
* array A must contain the matrix of coefficients, supplied
|
||||
* column by column, with the leading diagonal of the matrix in
|
||||
* row ( ku + 1 ) of the array, the first super-diagonal
|
||||
* starting at position 2 in row ku, the first sub-diagonal
|
||||
* starting at position 1 in row ( ku + 2 ), and so on.
|
||||
* Elements in the array A that do not correspond to elements
|
||||
* in the band matrix (such as the top left ku by ku triangle)
|
||||
* are not referenced.
|
||||
* The following program segment will transfer a band matrix
|
||||
* from conventional full matrix storage to band storage:
|
||||
*
|
||||
* DO 20, J = 1, N
|
||||
* K = KU + 1 - J
|
||||
* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
|
||||
* A( K + I, J ) = matrix( I, J )
|
||||
* 10 CONTINUE
|
||||
* 20 CONTINUE
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* LDA - INTEGER.
|
||||
* On entry, LDA specifies the first dimension of A as declared
|
||||
* in the calling (sub) program. LDA must be at least
|
||||
* ( kl + ku + 1 ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* X - COMPLEX array of DIMENSION at least
|
||||
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
|
||||
* Before entry, the incremented array X must contain the
|
||||
* vector x.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* INCX - INTEGER.
|
||||
* On entry, INCX specifies the increment for the elements of
|
||||
* X. INCX must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* BETA - COMPLEX .
|
||||
* On entry, BETA specifies the scalar beta. When BETA is
|
||||
* supplied as zero then Y need not be set on input.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Y - COMPLEX array of DIMENSION at least
|
||||
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
|
||||
* Before entry, the incremented array Y must contain the
|
||||
* vector y. On exit, Y is overwritten by the updated vector y.
|
||||
*
|
||||
*
|
||||
* INCY - INTEGER.
|
||||
* On entry, INCY specifies the increment for the elements of
|
||||
* Y. INCY must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 2 Blas routine.
|
||||
*
|
||||
* -- Written on 22-October-1986.
|
||||
* Jack Dongarra, Argonne National Lab.
|
||||
* Jeremy Du Croz, Nag Central Office.
|
||||
* Sven Hammarling, Nag Central Office.
|
||||
* Richard Hanson, Sandia National Labs.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
COMPLEX ONE
|
||||
PARAMETER (ONE= (1.0E+0,0.0E+0))
|
||||
COMPLEX ZERO
|
||||
PARAMETER (ZERO= (0.0E+0,0.0E+0))
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
COMPLEX TEMP
|
||||
INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
|
||||
LOGICAL NOCONJ
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC CONJG,MAX,MIN
|
||||
* ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
|
||||
+ .NOT.LSAME(TRANS,'C')) THEN
|
||||
INFO = 1
|
||||
ELSE IF (M.LT.0) THEN
|
||||
INFO = 2
|
||||
ELSE IF (N.LT.0) THEN
|
||||
INFO = 3
|
||||
ELSE IF (KL.LT.0) THEN
|
||||
INFO = 4
|
||||
ELSE IF (KU.LT.0) THEN
|
||||
INFO = 5
|
||||
ELSE IF (LDA.LT. (KL+KU+1)) THEN
|
||||
INFO = 8
|
||||
ELSE IF (INCX.EQ.0) THEN
|
||||
INFO = 10
|
||||
ELSE IF (INCY.EQ.0) THEN
|
||||
INFO = 13
|
||||
END IF
|
||||
IF (INFO.NE.0) THEN
|
||||
CALL XERBLA('CGBMV ',INFO)
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible.
|
||||
*
|
||||
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
|
||||
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
|
||||
*
|
||||
NOCONJ = LSAME(TRANS,'T')
|
||||
*
|
||||
* Set LENX and LENY, the lengths of the vectors x and y, and set
|
||||
* up the start points in X and Y.
|
||||
*
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
LENX = N
|
||||
LENY = M
|
||||
ELSE
|
||||
LENX = M
|
||||
LENY = N
|
||||
END IF
|
||||
IF (INCX.GT.0) THEN
|
||||
KX = 1
|
||||
ELSE
|
||||
KX = 1 - (LENX-1)*INCX
|
||||
END IF
|
||||
IF (INCY.GT.0) THEN
|
||||
KY = 1
|
||||
ELSE
|
||||
KY = 1 - (LENY-1)*INCY
|
||||
END IF
|
||||
*
|
||||
* Start the operations. In this version the elements of A are
|
||||
* accessed sequentially with one pass through the band part of A.
|
||||
*
|
||||
* First form y := beta*y.
|
||||
*
|
||||
IF (BETA.NE.ONE) THEN
|
||||
IF (INCY.EQ.1) THEN
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 10 I = 1,LENY
|
||||
Y(I) = ZERO
|
||||
10 CONTINUE
|
||||
ELSE
|
||||
DO 20 I = 1,LENY
|
||||
Y(I) = BETA*Y(I)
|
||||
20 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
IY = KY
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 30 I = 1,LENY
|
||||
Y(IY) = ZERO
|
||||
IY = IY + INCY
|
||||
30 CONTINUE
|
||||
ELSE
|
||||
DO 40 I = 1,LENY
|
||||
Y(IY) = BETA*Y(IY)
|
||||
IY = IY + INCY
|
||||
40 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
END IF
|
||||
IF (ALPHA.EQ.ZERO) RETURN
|
||||
KUP1 = KU + 1
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
*
|
||||
* Form y := alpha*A*x + y.
|
||||
*
|
||||
JX = KX
|
||||
IF (INCY.EQ.1) THEN
|
||||
DO 60 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
K = KUP1 - J
|
||||
DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
Y(I) = Y(I) + TEMP*A(K+I,J)
|
||||
50 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
60 CONTINUE
|
||||
ELSE
|
||||
DO 80 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
IY = KY
|
||||
K = KUP1 - J
|
||||
DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
Y(IY) = Y(IY) + TEMP*A(K+I,J)
|
||||
IY = IY + INCY
|
||||
70 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
IF (J.GT.KU) KY = KY + INCY
|
||||
80 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y.
|
||||
*
|
||||
JY = KY
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 110 J = 1,N
|
||||
TEMP = ZERO
|
||||
K = KUP1 - J
|
||||
IF (NOCONJ) THEN
|
||||
DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
TEMP = TEMP + A(K+I,J)*X(I)
|
||||
90 CONTINUE
|
||||
ELSE
|
||||
DO 100 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
TEMP = TEMP + CONJG(A(K+I,J))*X(I)
|
||||
100 CONTINUE
|
||||
END IF
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
110 CONTINUE
|
||||
ELSE
|
||||
DO 140 J = 1,N
|
||||
TEMP = ZERO
|
||||
IX = KX
|
||||
K = KUP1 - J
|
||||
IF (NOCONJ) THEN
|
||||
DO 120 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
TEMP = TEMP + A(K+I,J)*X(IX)
|
||||
IX = IX + INCX
|
||||
120 CONTINUE
|
||||
ELSE
|
||||
DO 130 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
TEMP = TEMP + CONJG(A(K+I,J))*X(IX)
|
||||
IX = IX + INCX
|
||||
130 CONTINUE
|
||||
END IF
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
IF (J.GT.KU) KX = KX + INCX
|
||||
140 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
RETURN
|
||||
*
|
||||
* End of CGBMV .
|
||||
*
|
||||
END
|
301
blas/dgbmv.f
301
blas/dgbmv.f
@ -1,301 +0,0 @@
|
||||
SUBROUTINE DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION ALPHA,BETA
|
||||
INTEGER INCX,INCY,KL,KU,LDA,M,N
|
||||
CHARACTER TRANS
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
DOUBLE PRECISION A(LDA,*),X(*),Y(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DGBMV performs one of the matrix-vector operations
|
||||
*
|
||||
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
|
||||
*
|
||||
* where alpha and beta are scalars, x and y are vectors and A is an
|
||||
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* TRANS - CHARACTER*1.
|
||||
* On entry, TRANS specifies the operation to be performed as
|
||||
* follows:
|
||||
*
|
||||
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
|
||||
*
|
||||
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
|
||||
*
|
||||
* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* M - INTEGER.
|
||||
* On entry, M specifies the number of rows of the matrix A.
|
||||
* M must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the number of columns of the matrix A.
|
||||
* N must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* KL - INTEGER.
|
||||
* On entry, KL specifies the number of sub-diagonals of the
|
||||
* matrix A. KL must satisfy 0 .le. KL.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* KU - INTEGER.
|
||||
* On entry, KU specifies the number of super-diagonals of the
|
||||
* matrix A. KU must satisfy 0 .le. KU.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - DOUBLE PRECISION.
|
||||
* On entry, ALPHA specifies the scalar alpha.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
|
||||
* Before entry, the leading ( kl + ku + 1 ) by n part of the
|
||||
* array A must contain the matrix of coefficients, supplied
|
||||
* column by column, with the leading diagonal of the matrix in
|
||||
* row ( ku + 1 ) of the array, the first super-diagonal
|
||||
* starting at position 2 in row ku, the first sub-diagonal
|
||||
* starting at position 1 in row ( ku + 2 ), and so on.
|
||||
* Elements in the array A that do not correspond to elements
|
||||
* in the band matrix (such as the top left ku by ku triangle)
|
||||
* are not referenced.
|
||||
* The following program segment will transfer a band matrix
|
||||
* from conventional full matrix storage to band storage:
|
||||
*
|
||||
* DO 20, J = 1, N
|
||||
* K = KU + 1 - J
|
||||
* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
|
||||
* A( K + I, J ) = matrix( I, J )
|
||||
* 10 CONTINUE
|
||||
* 20 CONTINUE
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* LDA - INTEGER.
|
||||
* On entry, LDA specifies the first dimension of A as declared
|
||||
* in the calling (sub) program. LDA must be at least
|
||||
* ( kl + ku + 1 ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* X - DOUBLE PRECISION array of DIMENSION at least
|
||||
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
|
||||
* Before entry, the incremented array X must contain the
|
||||
* vector x.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* INCX - INTEGER.
|
||||
* On entry, INCX specifies the increment for the elements of
|
||||
* X. INCX must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* BETA - DOUBLE PRECISION.
|
||||
* On entry, BETA specifies the scalar beta. When BETA is
|
||||
* supplied as zero then Y need not be set on input.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Y - DOUBLE PRECISION array of DIMENSION at least
|
||||
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
|
||||
* Before entry, the incremented array Y must contain the
|
||||
* vector y. On exit, Y is overwritten by the updated vector y.
|
||||
*
|
||||
* INCY - INTEGER.
|
||||
* On entry, INCY specifies the increment for the elements of
|
||||
* Y. INCY must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 2 Blas routine.
|
||||
*
|
||||
* -- Written on 22-October-1986.
|
||||
* Jack Dongarra, Argonne National Lab.
|
||||
* Jeremy Du Croz, Nag Central Office.
|
||||
* Sven Hammarling, Nag Central Office.
|
||||
* Richard Hanson, Sandia National Labs.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE PRECISION ONE,ZERO
|
||||
PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
DOUBLE PRECISION TEMP
|
||||
INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX,MIN
|
||||
* ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
|
||||
+ .NOT.LSAME(TRANS,'C')) THEN
|
||||
INFO = 1
|
||||
ELSE IF (M.LT.0) THEN
|
||||
INFO = 2
|
||||
ELSE IF (N.LT.0) THEN
|
||||
INFO = 3
|
||||
ELSE IF (KL.LT.0) THEN
|
||||
INFO = 4
|
||||
ELSE IF (KU.LT.0) THEN
|
||||
INFO = 5
|
||||
ELSE IF (LDA.LT. (KL+KU+1)) THEN
|
||||
INFO = 8
|
||||
ELSE IF (INCX.EQ.0) THEN
|
||||
INFO = 10
|
||||
ELSE IF (INCY.EQ.0) THEN
|
||||
INFO = 13
|
||||
END IF
|
||||
IF (INFO.NE.0) THEN
|
||||
CALL XERBLA('DGBMV ',INFO)
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible.
|
||||
*
|
||||
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
|
||||
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
|
||||
*
|
||||
* Set LENX and LENY, the lengths of the vectors x and y, and set
|
||||
* up the start points in X and Y.
|
||||
*
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
LENX = N
|
||||
LENY = M
|
||||
ELSE
|
||||
LENX = M
|
||||
LENY = N
|
||||
END IF
|
||||
IF (INCX.GT.0) THEN
|
||||
KX = 1
|
||||
ELSE
|
||||
KX = 1 - (LENX-1)*INCX
|
||||
END IF
|
||||
IF (INCY.GT.0) THEN
|
||||
KY = 1
|
||||
ELSE
|
||||
KY = 1 - (LENY-1)*INCY
|
||||
END IF
|
||||
*
|
||||
* Start the operations. In this version the elements of A are
|
||||
* accessed sequentially with one pass through the band part of A.
|
||||
*
|
||||
* First form y := beta*y.
|
||||
*
|
||||
IF (BETA.NE.ONE) THEN
|
||||
IF (INCY.EQ.1) THEN
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 10 I = 1,LENY
|
||||
Y(I) = ZERO
|
||||
10 CONTINUE
|
||||
ELSE
|
||||
DO 20 I = 1,LENY
|
||||
Y(I) = BETA*Y(I)
|
||||
20 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
IY = KY
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 30 I = 1,LENY
|
||||
Y(IY) = ZERO
|
||||
IY = IY + INCY
|
||||
30 CONTINUE
|
||||
ELSE
|
||||
DO 40 I = 1,LENY
|
||||
Y(IY) = BETA*Y(IY)
|
||||
IY = IY + INCY
|
||||
40 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
END IF
|
||||
IF (ALPHA.EQ.ZERO) RETURN
|
||||
KUP1 = KU + 1
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
*
|
||||
* Form y := alpha*A*x + y.
|
||||
*
|
||||
JX = KX
|
||||
IF (INCY.EQ.1) THEN
|
||||
DO 60 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
K = KUP1 - J
|
||||
DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
Y(I) = Y(I) + TEMP*A(K+I,J)
|
||||
50 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
60 CONTINUE
|
||||
ELSE
|
||||
DO 80 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
IY = KY
|
||||
K = KUP1 - J
|
||||
DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
Y(IY) = Y(IY) + TEMP*A(K+I,J)
|
||||
IY = IY + INCY
|
||||
70 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
IF (J.GT.KU) KY = KY + INCY
|
||||
80 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form y := alpha*A'*x + y.
|
||||
*
|
||||
JY = KY
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 100 J = 1,N
|
||||
TEMP = ZERO
|
||||
K = KUP1 - J
|
||||
DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
TEMP = TEMP + A(K+I,J)*X(I)
|
||||
90 CONTINUE
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
100 CONTINUE
|
||||
ELSE
|
||||
DO 120 J = 1,N
|
||||
TEMP = ZERO
|
||||
IX = KX
|
||||
K = KUP1 - J
|
||||
DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
TEMP = TEMP + A(K+I,J)*X(IX)
|
||||
IX = IX + INCX
|
||||
110 CONTINUE
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
IF (J.GT.KU) KX = KX + INCX
|
||||
120 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
RETURN
|
||||
*
|
||||
* End of DGBMV .
|
||||
*
|
||||
END
|
@ -202,21 +202,76 @@ int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** DGBMV performs one of the matrix-vector operations
|
||||
/** GBMV performs one of the matrix-vector operations
|
||||
*
|
||||
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
|
||||
*
|
||||
* where alpha and beta are scalars, x and y are vectors and A is an
|
||||
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
|
||||
*/
|
||||
// int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *alpha, RealScalar *a, int *lda,
|
||||
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
|
||||
// {
|
||||
// return 1;
|
||||
// }
|
||||
int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *palpha, RealScalar *pa, int *lda,
|
||||
RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
|
||||
{
|
||||
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
||||
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
||||
int coeff_rows = *kl+*ku+1;
|
||||
|
||||
int info = 0;
|
||||
if(OP(*trans)==INVALID) info = 1;
|
||||
else if(*m<0) info = 2;
|
||||
else if(*n<0) info = 3;
|
||||
else if(*kl<0) info = 4;
|
||||
else if(*ku<0) info = 5;
|
||||
else if(*lda<coeff_rows) info = 8;
|
||||
else if(*incx==0) info = 10;
|
||||
else if(*incy==0) info = 13;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"GBMV ",&info,6);
|
||||
|
||||
if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
|
||||
return 0;
|
||||
|
||||
int actual_m = *m;
|
||||
int actual_n = *n;
|
||||
if(OP(*trans)!=NOTR)
|
||||
std::swap(actual_m,actual_n);
|
||||
|
||||
Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
|
||||
Scalar* actual_y = get_compact_vector(y,actual_m,*incy);
|
||||
|
||||
if(beta!=Scalar(1))
|
||||
{
|
||||
if(beta==Scalar(0)) vector(actual_y, actual_m).setZero();
|
||||
else vector(actual_y, actual_m) *= beta;
|
||||
}
|
||||
|
||||
MatrixType mat_coeffs(a,coeff_rows,*n,*lda);
|
||||
|
||||
int nb = std::min(*n,(*m)+(*ku));
|
||||
for(int j=0; j<nb; ++j)
|
||||
{
|
||||
int start = std::max(0,j - *ku);
|
||||
int end = std::min((*m)-1,j + *kl);
|
||||
int len = end - start + 1;
|
||||
int offset = (*ku) - j + start;
|
||||
if(OP(*trans)==NOTR)
|
||||
vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len);
|
||||
else if(OP(*trans)==TR)
|
||||
actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value();
|
||||
else
|
||||
actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * vector(actual_x+start,len) ).value();
|
||||
}
|
||||
|
||||
if(actual_x!=x) delete[] actual_x;
|
||||
if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/** DTBMV performs one of the matrix-vector operations
|
||||
/** TBMV performs one of the matrix-vector operations
|
||||
*
|
||||
* x := A*x, or x := A'*x,
|
||||
*
|
||||
|
301
blas/sgbmv.f
301
blas/sgbmv.f
@ -1,301 +0,0 @@
|
||||
SUBROUTINE SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
||||
* .. Scalar Arguments ..
|
||||
REAL ALPHA,BETA
|
||||
INTEGER INCX,INCY,KL,KU,LDA,M,N
|
||||
CHARACTER TRANS
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
REAL A(LDA,*),X(*),Y(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* SGBMV performs one of the matrix-vector operations
|
||||
*
|
||||
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
|
||||
*
|
||||
* where alpha and beta are scalars, x and y are vectors and A is an
|
||||
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* TRANS - CHARACTER*1.
|
||||
* On entry, TRANS specifies the operation to be performed as
|
||||
* follows:
|
||||
*
|
||||
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
|
||||
*
|
||||
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
|
||||
*
|
||||
* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* M - INTEGER.
|
||||
* On entry, M specifies the number of rows of the matrix A.
|
||||
* M must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the number of columns of the matrix A.
|
||||
* N must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* KL - INTEGER.
|
||||
* On entry, KL specifies the number of sub-diagonals of the
|
||||
* matrix A. KL must satisfy 0 .le. KL.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* KU - INTEGER.
|
||||
* On entry, KU specifies the number of super-diagonals of the
|
||||
* matrix A. KU must satisfy 0 .le. KU.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - REAL .
|
||||
* On entry, ALPHA specifies the scalar alpha.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* A - REAL array of DIMENSION ( LDA, n ).
|
||||
* Before entry, the leading ( kl + ku + 1 ) by n part of the
|
||||
* array A must contain the matrix of coefficients, supplied
|
||||
* column by column, with the leading diagonal of the matrix in
|
||||
* row ( ku + 1 ) of the array, the first super-diagonal
|
||||
* starting at position 2 in row ku, the first sub-diagonal
|
||||
* starting at position 1 in row ( ku + 2 ), and so on.
|
||||
* Elements in the array A that do not correspond to elements
|
||||
* in the band matrix (such as the top left ku by ku triangle)
|
||||
* are not referenced.
|
||||
* The following program segment will transfer a band matrix
|
||||
* from conventional full matrix storage to band storage:
|
||||
*
|
||||
* DO 20, J = 1, N
|
||||
* K = KU + 1 - J
|
||||
* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
|
||||
* A( K + I, J ) = matrix( I, J )
|
||||
* 10 CONTINUE
|
||||
* 20 CONTINUE
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* LDA - INTEGER.
|
||||
* On entry, LDA specifies the first dimension of A as declared
|
||||
* in the calling (sub) program. LDA must be at least
|
||||
* ( kl + ku + 1 ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* X - REAL array of DIMENSION at least
|
||||
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
|
||||
* Before entry, the incremented array X must contain the
|
||||
* vector x.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* INCX - INTEGER.
|
||||
* On entry, INCX specifies the increment for the elements of
|
||||
* X. INCX must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* BETA - REAL .
|
||||
* On entry, BETA specifies the scalar beta. When BETA is
|
||||
* supplied as zero then Y need not be set on input.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Y - REAL array of DIMENSION at least
|
||||
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
|
||||
* Before entry, the incremented array Y must contain the
|
||||
* vector y. On exit, Y is overwritten by the updated vector y.
|
||||
*
|
||||
* INCY - INTEGER.
|
||||
* On entry, INCY specifies the increment for the elements of
|
||||
* Y. INCY must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 2 Blas routine.
|
||||
*
|
||||
* -- Written on 22-October-1986.
|
||||
* Jack Dongarra, Argonne National Lab.
|
||||
* Jeremy Du Croz, Nag Central Office.
|
||||
* Sven Hammarling, Nag Central Office.
|
||||
* Richard Hanson, Sandia National Labs.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
REAL ONE,ZERO
|
||||
PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
REAL TEMP
|
||||
INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX,MIN
|
||||
* ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
|
||||
+ .NOT.LSAME(TRANS,'C')) THEN
|
||||
INFO = 1
|
||||
ELSE IF (M.LT.0) THEN
|
||||
INFO = 2
|
||||
ELSE IF (N.LT.0) THEN
|
||||
INFO = 3
|
||||
ELSE IF (KL.LT.0) THEN
|
||||
INFO = 4
|
||||
ELSE IF (KU.LT.0) THEN
|
||||
INFO = 5
|
||||
ELSE IF (LDA.LT. (KL+KU+1)) THEN
|
||||
INFO = 8
|
||||
ELSE IF (INCX.EQ.0) THEN
|
||||
INFO = 10
|
||||
ELSE IF (INCY.EQ.0) THEN
|
||||
INFO = 13
|
||||
END IF
|
||||
IF (INFO.NE.0) THEN
|
||||
CALL XERBLA('SGBMV ',INFO)
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible.
|
||||
*
|
||||
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
|
||||
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
|
||||
*
|
||||
* Set LENX and LENY, the lengths of the vectors x and y, and set
|
||||
* up the start points in X and Y.
|
||||
*
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
LENX = N
|
||||
LENY = M
|
||||
ELSE
|
||||
LENX = M
|
||||
LENY = N
|
||||
END IF
|
||||
IF (INCX.GT.0) THEN
|
||||
KX = 1
|
||||
ELSE
|
||||
KX = 1 - (LENX-1)*INCX
|
||||
END IF
|
||||
IF (INCY.GT.0) THEN
|
||||
KY = 1
|
||||
ELSE
|
||||
KY = 1 - (LENY-1)*INCY
|
||||
END IF
|
||||
*
|
||||
* Start the operations. In this version the elements of A are
|
||||
* accessed sequentially with one pass through the band part of A.
|
||||
*
|
||||
* First form y := beta*y.
|
||||
*
|
||||
IF (BETA.NE.ONE) THEN
|
||||
IF (INCY.EQ.1) THEN
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 10 I = 1,LENY
|
||||
Y(I) = ZERO
|
||||
10 CONTINUE
|
||||
ELSE
|
||||
DO 20 I = 1,LENY
|
||||
Y(I) = BETA*Y(I)
|
||||
20 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
IY = KY
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 30 I = 1,LENY
|
||||
Y(IY) = ZERO
|
||||
IY = IY + INCY
|
||||
30 CONTINUE
|
||||
ELSE
|
||||
DO 40 I = 1,LENY
|
||||
Y(IY) = BETA*Y(IY)
|
||||
IY = IY + INCY
|
||||
40 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
END IF
|
||||
IF (ALPHA.EQ.ZERO) RETURN
|
||||
KUP1 = KU + 1
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
*
|
||||
* Form y := alpha*A*x + y.
|
||||
*
|
||||
JX = KX
|
||||
IF (INCY.EQ.1) THEN
|
||||
DO 60 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
K = KUP1 - J
|
||||
DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
Y(I) = Y(I) + TEMP*A(K+I,J)
|
||||
50 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
60 CONTINUE
|
||||
ELSE
|
||||
DO 80 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
IY = KY
|
||||
K = KUP1 - J
|
||||
DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
Y(IY) = Y(IY) + TEMP*A(K+I,J)
|
||||
IY = IY + INCY
|
||||
70 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
IF (J.GT.KU) KY = KY + INCY
|
||||
80 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form y := alpha*A'*x + y.
|
||||
*
|
||||
JY = KY
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 100 J = 1,N
|
||||
TEMP = ZERO
|
||||
K = KUP1 - J
|
||||
DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
TEMP = TEMP + A(K+I,J)*X(I)
|
||||
90 CONTINUE
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
100 CONTINUE
|
||||
ELSE
|
||||
DO 120 J = 1,N
|
||||
TEMP = ZERO
|
||||
IX = KX
|
||||
K = KUP1 - J
|
||||
DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
TEMP = TEMP + A(K+I,J)*X(IX)
|
||||
IX = IX + INCX
|
||||
110 CONTINUE
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
IF (J.GT.KU) KX = KX + INCX
|
||||
120 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
RETURN
|
||||
*
|
||||
* End of SGBMV .
|
||||
*
|
||||
END
|
322
blas/zgbmv.f
322
blas/zgbmv.f
@ -1,322 +0,0 @@
|
||||
SUBROUTINE ZGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE COMPLEX ALPHA,BETA
|
||||
INTEGER INCX,INCY,KL,KU,LDA,M,N
|
||||
CHARACTER TRANS
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
DOUBLE COMPLEX A(LDA,*),X(*),Y(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* ZGBMV performs one of the matrix-vector operations
|
||||
*
|
||||
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
|
||||
*
|
||||
* y := alpha*conjg( A' )*x + beta*y,
|
||||
*
|
||||
* where alpha and beta are scalars, x and y are vectors and A is an
|
||||
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* TRANS - CHARACTER*1.
|
||||
* On entry, TRANS specifies the operation to be performed as
|
||||
* follows:
|
||||
*
|
||||
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
|
||||
*
|
||||
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
|
||||
*
|
||||
* TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* M - INTEGER.
|
||||
* On entry, M specifies the number of rows of the matrix A.
|
||||
* M must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the number of columns of the matrix A.
|
||||
* N must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* KL - INTEGER.
|
||||
* On entry, KL specifies the number of sub-diagonals of the
|
||||
* matrix A. KL must satisfy 0 .le. KL.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* KU - INTEGER.
|
||||
* On entry, KU specifies the number of super-diagonals of the
|
||||
* matrix A. KU must satisfy 0 .le. KU.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - COMPLEX*16 .
|
||||
* On entry, ALPHA specifies the scalar alpha.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* A - COMPLEX*16 array of DIMENSION ( LDA, n ).
|
||||
* Before entry, the leading ( kl + ku + 1 ) by n part of the
|
||||
* array A must contain the matrix of coefficients, supplied
|
||||
* column by column, with the leading diagonal of the matrix in
|
||||
* row ( ku + 1 ) of the array, the first super-diagonal
|
||||
* starting at position 2 in row ku, the first sub-diagonal
|
||||
* starting at position 1 in row ( ku + 2 ), and so on.
|
||||
* Elements in the array A that do not correspond to elements
|
||||
* in the band matrix (such as the top left ku by ku triangle)
|
||||
* are not referenced.
|
||||
* The following program segment will transfer a band matrix
|
||||
* from conventional full matrix storage to band storage:
|
||||
*
|
||||
* DO 20, J = 1, N
|
||||
* K = KU + 1 - J
|
||||
* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
|
||||
* A( K + I, J ) = matrix( I, J )
|
||||
* 10 CONTINUE
|
||||
* 20 CONTINUE
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* LDA - INTEGER.
|
||||
* On entry, LDA specifies the first dimension of A as declared
|
||||
* in the calling (sub) program. LDA must be at least
|
||||
* ( kl + ku + 1 ).
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* X - COMPLEX*16 array of DIMENSION at least
|
||||
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
|
||||
* Before entry, the incremented array X must contain the
|
||||
* vector x.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* INCX - INTEGER.
|
||||
* On entry, INCX specifies the increment for the elements of
|
||||
* X. INCX must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* BETA - COMPLEX*16 .
|
||||
* On entry, BETA specifies the scalar beta. When BETA is
|
||||
* supplied as zero then Y need not be set on input.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Y - COMPLEX*16 array of DIMENSION at least
|
||||
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
|
||||
* and at least
|
||||
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
|
||||
* Before entry, the incremented array Y must contain the
|
||||
* vector y. On exit, Y is overwritten by the updated vector y.
|
||||
*
|
||||
*
|
||||
* INCY - INTEGER.
|
||||
* On entry, INCY specifies the increment for the elements of
|
||||
* Y. INCY must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 2 Blas routine.
|
||||
*
|
||||
* -- Written on 22-October-1986.
|
||||
* Jack Dongarra, Argonne National Lab.
|
||||
* Jeremy Du Croz, Nag Central Office.
|
||||
* Sven Hammarling, Nag Central Office.
|
||||
* Richard Hanson, Sandia National Labs.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE COMPLEX ONE
|
||||
PARAMETER (ONE= (1.0D+0,0.0D+0))
|
||||
DOUBLE COMPLEX ZERO
|
||||
PARAMETER (ZERO= (0.0D+0,0.0D+0))
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
DOUBLE COMPLEX TEMP
|
||||
INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
|
||||
LOGICAL NOCONJ
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC DCONJG,MAX,MIN
|
||||
* ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
|
||||
+ .NOT.LSAME(TRANS,'C')) THEN
|
||||
INFO = 1
|
||||
ELSE IF (M.LT.0) THEN
|
||||
INFO = 2
|
||||
ELSE IF (N.LT.0) THEN
|
||||
INFO = 3
|
||||
ELSE IF (KL.LT.0) THEN
|
||||
INFO = 4
|
||||
ELSE IF (KU.LT.0) THEN
|
||||
INFO = 5
|
||||
ELSE IF (LDA.LT. (KL+KU+1)) THEN
|
||||
INFO = 8
|
||||
ELSE IF (INCX.EQ.0) THEN
|
||||
INFO = 10
|
||||
ELSE IF (INCY.EQ.0) THEN
|
||||
INFO = 13
|
||||
END IF
|
||||
IF (INFO.NE.0) THEN
|
||||
CALL XERBLA('ZGBMV ',INFO)
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible.
|
||||
*
|
||||
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
|
||||
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
|
||||
*
|
||||
NOCONJ = LSAME(TRANS,'T')
|
||||
*
|
||||
* Set LENX and LENY, the lengths of the vectors x and y, and set
|
||||
* up the start points in X and Y.
|
||||
*
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
LENX = N
|
||||
LENY = M
|
||||
ELSE
|
||||
LENX = M
|
||||
LENY = N
|
||||
END IF
|
||||
IF (INCX.GT.0) THEN
|
||||
KX = 1
|
||||
ELSE
|
||||
KX = 1 - (LENX-1)*INCX
|
||||
END IF
|
||||
IF (INCY.GT.0) THEN
|
||||
KY = 1
|
||||
ELSE
|
||||
KY = 1 - (LENY-1)*INCY
|
||||
END IF
|
||||
*
|
||||
* Start the operations. In this version the elements of A are
|
||||
* accessed sequentially with one pass through the band part of A.
|
||||
*
|
||||
* First form y := beta*y.
|
||||
*
|
||||
IF (BETA.NE.ONE) THEN
|
||||
IF (INCY.EQ.1) THEN
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 10 I = 1,LENY
|
||||
Y(I) = ZERO
|
||||
10 CONTINUE
|
||||
ELSE
|
||||
DO 20 I = 1,LENY
|
||||
Y(I) = BETA*Y(I)
|
||||
20 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
IY = KY
|
||||
IF (BETA.EQ.ZERO) THEN
|
||||
DO 30 I = 1,LENY
|
||||
Y(IY) = ZERO
|
||||
IY = IY + INCY
|
||||
30 CONTINUE
|
||||
ELSE
|
||||
DO 40 I = 1,LENY
|
||||
Y(IY) = BETA*Y(IY)
|
||||
IY = IY + INCY
|
||||
40 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
END IF
|
||||
IF (ALPHA.EQ.ZERO) RETURN
|
||||
KUP1 = KU + 1
|
||||
IF (LSAME(TRANS,'N')) THEN
|
||||
*
|
||||
* Form y := alpha*A*x + y.
|
||||
*
|
||||
JX = KX
|
||||
IF (INCY.EQ.1) THEN
|
||||
DO 60 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
K = KUP1 - J
|
||||
DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
Y(I) = Y(I) + TEMP*A(K+I,J)
|
||||
50 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
60 CONTINUE
|
||||
ELSE
|
||||
DO 80 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
IY = KY
|
||||
K = KUP1 - J
|
||||
DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
Y(IY) = Y(IY) + TEMP*A(K+I,J)
|
||||
IY = IY + INCY
|
||||
70 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
IF (J.GT.KU) KY = KY + INCY
|
||||
80 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y.
|
||||
*
|
||||
JY = KY
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 110 J = 1,N
|
||||
TEMP = ZERO
|
||||
K = KUP1 - J
|
||||
IF (NOCONJ) THEN
|
||||
DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
TEMP = TEMP + A(K+I,J)*X(I)
|
||||
90 CONTINUE
|
||||
ELSE
|
||||
DO 100 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
TEMP = TEMP + DCONJG(A(K+I,J))*X(I)
|
||||
100 CONTINUE
|
||||
END IF
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
110 CONTINUE
|
||||
ELSE
|
||||
DO 140 J = 1,N
|
||||
TEMP = ZERO
|
||||
IX = KX
|
||||
K = KUP1 - J
|
||||
IF (NOCONJ) THEN
|
||||
DO 120 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
TEMP = TEMP + A(K+I,J)*X(IX)
|
||||
IX = IX + INCX
|
||||
120 CONTINUE
|
||||
ELSE
|
||||
DO 130 I = MAX(1,J-KU),MIN(M,J+KL)
|
||||
TEMP = TEMP + DCONJG(A(K+I,J))*X(IX)
|
||||
IX = IX + INCX
|
||||
130 CONTINUE
|
||||
END IF
|
||||
Y(JY) = Y(JY) + ALPHA*TEMP
|
||||
JY = JY + INCY
|
||||
IF (J.GT.KU) KX = KX + INCX
|
||||
140 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
RETURN
|
||||
*
|
||||
* End of ZGBMV .
|
||||
*
|
||||
END
|
Loading…
x
Reference in New Issue
Block a user