Prevent nvcc from miscompiling the cuda metakernel. Unfortunately this reintroduces some compulation warnings but it's much better than having to deal with random assertion failures.

This commit is contained in:
Benoit Steiner 2016-01-08 13:53:40 -08:00
parent 6639b7d6e8
commit 53749ff415
3 changed files with 7 additions and 19 deletions

View File

@ -238,14 +238,10 @@ struct GpuDevice {
}; };
#ifndef __CUDA_ARCH__
#define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \ #define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \
(kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__); \ (kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__); \
assert(cudaGetLastError() == cudaSuccess); assert(cudaGetLastError() == cudaSuccess);
#else
#define LAUNCH_CUDA_KERNEL(...) \
eigen_assert(false && "Cannot launch a kernel from another kernel");
#endif
// FIXME: Should be device and kernel specific. // FIXME: Should be device and kernel specific.
#ifdef __CUDACC__ #ifdef __CUDACC__

View File

@ -156,14 +156,14 @@ template <typename Expression>
class TensorExecutor<Expression, GpuDevice, false> { class TensorExecutor<Expression, GpuDevice, false> {
public: public:
typedef typename Expression::Index Index; typedef typename Expression::Index Index;
EIGEN_DEVICE_FUNC static void run(const Expression& expr, const GpuDevice& device); static void run(const Expression& expr, const GpuDevice& device);
}; };
template <typename Expression> template <typename Expression>
class TensorExecutor<Expression, GpuDevice, true> { class TensorExecutor<Expression, GpuDevice, true> {
public: public:
typedef typename Expression::Index Index; typedef typename Expression::Index Index;
EIGEN_DEVICE_FUNC static void run(const Expression& expr, const GpuDevice& device); static void run(const Expression& expr, const GpuDevice& device);
}; };
#if defined(__CUDACC__) #if defined(__CUDACC__)
@ -213,9 +213,8 @@ EigenMetaKernel_Vectorizable(Evaluator memcopied_eval, Index size) {
/*static*/ /*static*/
template <typename Expression> template <typename Expression>
EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, false>::run(const Expression& expr, const GpuDevice& device) inline void TensorExecutor<Expression, GpuDevice, false>::run(const Expression& expr, const GpuDevice& device)
{ {
#ifndef __CUDA_ARCH__
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device); TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL); const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
if (needs_assign) if (needs_assign)
@ -228,17 +227,13 @@ EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, false>::run(
LAUNCH_CUDA_KERNEL((EigenMetaKernel_NonVectorizable<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size); LAUNCH_CUDA_KERNEL((EigenMetaKernel_NonVectorizable<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size);
} }
evaluator.cleanup(); evaluator.cleanup();
#else
eigen_assert(false && "Cannot launch a kernel from another kernel");
#endif
} }
/*static*/ /*static*/
template<typename Expression> template<typename Expression>
EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, true>::run(const Expression& expr, const GpuDevice& device) inline void TensorExecutor<Expression, GpuDevice, true>::run(const Expression& expr, const GpuDevice& device)
{ {
#ifndef __CUDA_ARCH__
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device); TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL); const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
if (needs_assign) if (needs_assign)
@ -251,9 +246,6 @@ EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, true>::run(c
LAUNCH_CUDA_KERNEL((EigenMetaKernel_Vectorizable<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size); LAUNCH_CUDA_KERNEL((EigenMetaKernel_Vectorizable<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size);
} }
evaluator.cleanup(); evaluator.cleanup();
#else
eigen_assert(false && "Cannot launch a kernel from another kernel");
#endif
} }
#endif // __CUDACC__ #endif // __CUDACC__

View File

@ -115,11 +115,11 @@ struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
internal::is_same<typename Self::CoeffReturnType, float>::value; internal::is_same<typename Self::CoeffReturnType, float>::value;
template <typename OutputType> template <typename OutputType>
EIGEN_DEVICE_FUNC static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) { static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
assert(false && "Should only be called on floats"); assert(false && "Should only be called on floats");
} }
EIGEN_DEVICE_FUNC static void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) { static void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
typedef typename Self::Index Index; typedef typename Self::Index Index;
const Index num_coeffs = array_prod(self.m_impl.dimensions()); const Index num_coeffs = array_prod(self.m_impl.dimensions());