mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-21 12:07:36 +08:00
Prevent nvcc from miscompiling the cuda metakernel. Unfortunately this reintroduces some compulation warnings but it's much better than having to deal with random assertion failures.
This commit is contained in:
parent
6639b7d6e8
commit
53749ff415
@ -238,14 +238,10 @@ struct GpuDevice {
|
|||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
#ifndef __CUDA_ARCH__
|
|
||||||
#define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \
|
#define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \
|
||||||
(kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__); \
|
(kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__); \
|
||||||
assert(cudaGetLastError() == cudaSuccess);
|
assert(cudaGetLastError() == cudaSuccess);
|
||||||
#else
|
|
||||||
#define LAUNCH_CUDA_KERNEL(...) \
|
|
||||||
eigen_assert(false && "Cannot launch a kernel from another kernel");
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// FIXME: Should be device and kernel specific.
|
// FIXME: Should be device and kernel specific.
|
||||||
#ifdef __CUDACC__
|
#ifdef __CUDACC__
|
||||||
|
@ -156,14 +156,14 @@ template <typename Expression>
|
|||||||
class TensorExecutor<Expression, GpuDevice, false> {
|
class TensorExecutor<Expression, GpuDevice, false> {
|
||||||
public:
|
public:
|
||||||
typedef typename Expression::Index Index;
|
typedef typename Expression::Index Index;
|
||||||
EIGEN_DEVICE_FUNC static void run(const Expression& expr, const GpuDevice& device);
|
static void run(const Expression& expr, const GpuDevice& device);
|
||||||
};
|
};
|
||||||
|
|
||||||
template <typename Expression>
|
template <typename Expression>
|
||||||
class TensorExecutor<Expression, GpuDevice, true> {
|
class TensorExecutor<Expression, GpuDevice, true> {
|
||||||
public:
|
public:
|
||||||
typedef typename Expression::Index Index;
|
typedef typename Expression::Index Index;
|
||||||
EIGEN_DEVICE_FUNC static void run(const Expression& expr, const GpuDevice& device);
|
static void run(const Expression& expr, const GpuDevice& device);
|
||||||
};
|
};
|
||||||
|
|
||||||
#if defined(__CUDACC__)
|
#if defined(__CUDACC__)
|
||||||
@ -213,9 +213,8 @@ EigenMetaKernel_Vectorizable(Evaluator memcopied_eval, Index size) {
|
|||||||
|
|
||||||
/*static*/
|
/*static*/
|
||||||
template <typename Expression>
|
template <typename Expression>
|
||||||
EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, false>::run(const Expression& expr, const GpuDevice& device)
|
inline void TensorExecutor<Expression, GpuDevice, false>::run(const Expression& expr, const GpuDevice& device)
|
||||||
{
|
{
|
||||||
#ifndef __CUDA_ARCH__
|
|
||||||
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
|
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
|
||||||
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
|
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
|
||||||
if (needs_assign)
|
if (needs_assign)
|
||||||
@ -228,17 +227,13 @@ EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, false>::run(
|
|||||||
LAUNCH_CUDA_KERNEL((EigenMetaKernel_NonVectorizable<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size);
|
LAUNCH_CUDA_KERNEL((EigenMetaKernel_NonVectorizable<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size);
|
||||||
}
|
}
|
||||||
evaluator.cleanup();
|
evaluator.cleanup();
|
||||||
#else
|
|
||||||
eigen_assert(false && "Cannot launch a kernel from another kernel");
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/*static*/
|
/*static*/
|
||||||
template<typename Expression>
|
template<typename Expression>
|
||||||
EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, true>::run(const Expression& expr, const GpuDevice& device)
|
inline void TensorExecutor<Expression, GpuDevice, true>::run(const Expression& expr, const GpuDevice& device)
|
||||||
{
|
{
|
||||||
#ifndef __CUDA_ARCH__
|
|
||||||
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
|
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
|
||||||
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
|
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
|
||||||
if (needs_assign)
|
if (needs_assign)
|
||||||
@ -251,9 +246,6 @@ EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, true>::run(c
|
|||||||
LAUNCH_CUDA_KERNEL((EigenMetaKernel_Vectorizable<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size);
|
LAUNCH_CUDA_KERNEL((EigenMetaKernel_Vectorizable<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size);
|
||||||
}
|
}
|
||||||
evaluator.cleanup();
|
evaluator.cleanup();
|
||||||
#else
|
|
||||||
eigen_assert(false && "Cannot launch a kernel from another kernel");
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif // __CUDACC__
|
#endif // __CUDACC__
|
||||||
|
@ -115,11 +115,11 @@ struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
|
|||||||
internal::is_same<typename Self::CoeffReturnType, float>::value;
|
internal::is_same<typename Self::CoeffReturnType, float>::value;
|
||||||
|
|
||||||
template <typename OutputType>
|
template <typename OutputType>
|
||||||
EIGEN_DEVICE_FUNC static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
|
static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
|
||||||
assert(false && "Should only be called on floats");
|
assert(false && "Should only be called on floats");
|
||||||
}
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC static void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
|
static void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
|
||||||
typedef typename Self::Index Index;
|
typedef typename Self::Index Index;
|
||||||
|
|
||||||
const Index num_coeffs = array_prod(self.m_impl.dimensions());
|
const Index num_coeffs = array_prod(self.m_impl.dimensions());
|
||||||
|
Loading…
x
Reference in New Issue
Block a user