mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-11 11:19:02 +08:00
Bugfix: conjugate_gradient did not compile with lazy-evaluated RealScalar
The error generated by the compiler was: no matching function for call to 'maxi' RealScalar threshold = numext::maxi(tol*tol*rhsNorm2,considerAsZero); The important part in the following notes was: candidate template ignored: deduced conflicting types for parameter 'T'" ('codi::Multiply11<...>' vs. 'codi::ActiveReal<...>') EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) I am using CoDiPack to provide the RealScalar type. This bug was introduced in bc000deaa Fix conjugate-gradient for very small rhs
This commit is contained in:
parent
4fd5d1477b
commit
54a0a9c9dd
@ -51,7 +51,7 @@ void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
||||
return;
|
||||
}
|
||||
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
|
||||
RealScalar threshold = numext::maxi(tol*tol*rhsNorm2,considerAsZero);
|
||||
RealScalar threshold = numext::maxi(RealScalar(tol*tol*rhsNorm2),considerAsZero);
|
||||
RealScalar residualNorm2 = residual.squaredNorm();
|
||||
if (residualNorm2 < threshold)
|
||||
{
|
||||
|
Loading…
x
Reference in New Issue
Block a user