mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-08 17:59:00 +08:00
Added the computation of eigen vectors in the symmetric eigen solver.
However the eigen vectors are not correct yet, but I really cannot find the problem.
This commit is contained in:
parent
3b0523041a
commit
54ae2ac7e8
@ -2,6 +2,7 @@ SET(Eigen_HEADERS Core CoreDeclarations LU Cholesky QR)
|
||||
|
||||
SET(Eigen_SRCS
|
||||
src/Core/CoreInstanciations.cpp
|
||||
src/QR/QrInstanciations.cpp
|
||||
)
|
||||
|
||||
ADD_LIBRARY(Eigen2 ${Eigen_SRCS})
|
||||
|
39
Eigen/src/QR/QrInstanciations.cpp
Normal file
39
Eigen/src/QR/QrInstanciations.cpp
Normal file
@ -0,0 +1,39 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifdef EIGEN_EXTERN_INSTANCIATIONS
|
||||
#undef EIGEN_EXTERN_INSTANCIATIONS
|
||||
#endif
|
||||
|
||||
#include "../../QR"
|
||||
|
||||
namespace Eigen
|
||||
{
|
||||
|
||||
template static void ei_tridiagonal_qr_step(float* , float* , int, int, float* , int);
|
||||
template static void ei_tridiagonal_qr_step(double* , double* , int, int, double* , int);
|
||||
template static void ei_tridiagonal_qr_step(float* , float* , int, int, std::complex<float>* , int);
|
||||
template static void ei_tridiagonal_qr_step(double* , double* , int, int, std::complex<double>* , int);
|
||||
|
||||
}
|
@ -47,22 +47,25 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
|
||||
typedef Matrix<RealScalar, MatrixType::ColsAtCompileTime, 1> RealVectorType;
|
||||
typedef Matrix<RealScalar, Dynamic, 1> RealVectorTypeX;
|
||||
|
||||
SelfAdjointEigenSolver(const MatrixType& matrix)
|
||||
SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
|
||||
: m_eivec(matrix.rows(), matrix.cols()),
|
||||
m_eivalues(matrix.cols())
|
||||
{
|
||||
compute(matrix);
|
||||
compute(matrix, computeEigenvectors);
|
||||
}
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
void compute(const MatrixType& matrix, bool computeEigenvectors = true);
|
||||
|
||||
MatrixType eigenvectors(void) const { return m_eivec; }
|
||||
MatrixType eigenvectors(void) const { ei_assert(m_eigenvectorsOk); return m_eivec; }
|
||||
|
||||
RealVectorType eigenvalues(void) const { return m_eivalues; }
|
||||
|
||||
protected:
|
||||
MatrixType m_eivec;
|
||||
RealVectorType m_eivalues;
|
||||
#ifndef NDEBUG
|
||||
bool m_eigenvectorsOk;
|
||||
#endif
|
||||
};
|
||||
|
||||
// from Golub's "Matrix Computations", algorithm 5.1.3
|
||||
@ -100,42 +103,13 @@ static void ei_givens_rotation(Scalar a, Scalar b, Scalar& c, Scalar& s)
|
||||
* Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
|
||||
* "implicit symmetric QR step with Wilkinson shift"
|
||||
*/
|
||||
template<typename Scalar>
|
||||
static void ei_tridiagonal_qr_step(Scalar* diag, Scalar* subdiag, int n)
|
||||
{
|
||||
Scalar td = (diag[n-2] - diag[n-1])*0.5;
|
||||
Scalar e2 = ei_abs2(subdiag[n-2]);
|
||||
Scalar mu = diag[n-1] - e2 / (td + (td>0 ? 1 : -1) * ei_sqrt(td*td + e2));
|
||||
Scalar x = diag[0] - mu;
|
||||
Scalar z = subdiag[0];
|
||||
|
||||
for (int k = 0; k < n-1; ++k)
|
||||
{
|
||||
Scalar c, s;
|
||||
ei_givens_rotation(x, z, c, s);
|
||||
|
||||
// do T = G' T G
|
||||
Scalar sdk = s * diag[k] + c * subdiag[k];
|
||||
Scalar dkp1 = s * subdiag[k] + c * diag[k+1];
|
||||
|
||||
diag[k] = c * (c * diag[k] - s * subdiag[k]) - s * (c * subdiag[k] - s * diag[k+1]);
|
||||
diag[k+1] = s * sdk + c * dkp1;
|
||||
subdiag[k] = c * sdk - s * dkp1;
|
||||
|
||||
if (k > 0)
|
||||
subdiag[k - 1] = c * subdiag[k-1] - s * z;
|
||||
|
||||
x = subdiag[k];
|
||||
z = -s * subdiag[k+1];
|
||||
|
||||
if (k < n - 2)
|
||||
subdiag[k + 1] = c * subdiag[k+1];
|
||||
}
|
||||
}
|
||||
template<typename RealScalar, typename Scalar>
|
||||
static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n);
|
||||
|
||||
template<typename MatrixType>
|
||||
void SelfAdjointEigenSolver<MatrixType>::compute(const MatrixType& matrix)
|
||||
void SelfAdjointEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
|
||||
{
|
||||
m_eigenvectorsOk = computeEigenvectors;
|
||||
assert(matrix.cols() == matrix.rows());
|
||||
int n = matrix.cols();
|
||||
m_eivalues.resize(n,1);
|
||||
@ -146,6 +120,11 @@ void SelfAdjointEigenSolver<MatrixType>::compute(const MatrixType& matrix)
|
||||
RealVectorTypeX subdiag(n-1);
|
||||
diag = tridiag.diagonal();
|
||||
subdiag = tridiag.subDiagonal();
|
||||
if (computeEigenvectors)
|
||||
m_eivec = tridiag.matrixQ();
|
||||
|
||||
RealVectorTypeX gc(n);
|
||||
RealVectorTypeX gs(n);
|
||||
|
||||
int end = n-1;
|
||||
int start = 0;
|
||||
@ -164,10 +143,22 @@ void SelfAdjointEigenSolver<MatrixType>::compute(const MatrixType& matrix)
|
||||
while (start>0 && subdiag[start-1]!=0)
|
||||
start--;
|
||||
|
||||
ei_tridiagonal_qr_step(&diag.coeffRef(start), &subdiag.coeffRef(start), end-start+1);
|
||||
ei_tridiagonal_qr_step(diag.data(), subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
|
||||
}
|
||||
|
||||
std::cout << "ei values = " << m_eivalues.transpose() << "\n\n";
|
||||
// Sort eigenvalues and corresponding vectors.
|
||||
// TODO make the sort optional ?
|
||||
// TODO use a better sort algorithm !!
|
||||
for (int i = 0; i < n-1; i++)
|
||||
{
|
||||
int k;
|
||||
m_eivalues.block(i,n-i).minCoeff(&k);
|
||||
if (k > 0)
|
||||
{
|
||||
std::swap(m_eivalues[i], m_eivalues[k+i]);
|
||||
m_eivec.col(i).swap(m_eivec.col(k+i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
@ -175,7 +166,7 @@ inline Matrix<typename NumTraits<typename ei_traits<Derived>::Scalar>::Real, ei_
|
||||
MatrixBase<Derived>::eigenvalues() const
|
||||
{
|
||||
ei_assert(Flags&SelfAdjointBit);
|
||||
return SelfAdjointEigenSolver<typename Derived::Eval>(eval()).eigenvalues();
|
||||
return SelfAdjointEigenSolver<typename Derived::Eval>(eval(),false).eigenvalues();
|
||||
}
|
||||
|
||||
template<typename Derived, bool IsSelfAdjoint>
|
||||
@ -214,4 +205,63 @@ MatrixBase<Derived>::matrixNorm() const
|
||||
::matrixNorm(derived());
|
||||
}
|
||||
|
||||
#ifndef EIGEN_EXTERN_INSTANCIATIONS
|
||||
template<typename RealScalar, typename Scalar>
|
||||
static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n)
|
||||
{
|
||||
RealScalar td = (diag[end-1] - diag[end])*0.5;
|
||||
RealScalar e2 = ei_abs2(subdiag[end-1]);
|
||||
RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * ei_sqrt(td*td + e2));
|
||||
RealScalar x = diag[start] - mu;
|
||||
RealScalar z = subdiag[start];
|
||||
|
||||
for (int k = start; k < end; ++k)
|
||||
{
|
||||
RealScalar c, s;
|
||||
ei_givens_rotation(x, z, c, s);
|
||||
|
||||
// do T = G' T G
|
||||
RealScalar sdk = s * diag[k] + c * subdiag[k];
|
||||
RealScalar dkp1 = s * subdiag[k] + c * diag[k+1];
|
||||
|
||||
diag[k] = c * (c * diag[k] - s * subdiag[k]) - s * (c * subdiag[k] - s * diag[k+1]);
|
||||
diag[k+1] = s * sdk + c * dkp1;
|
||||
subdiag[k] = c * sdk - s * dkp1;
|
||||
|
||||
if (k > start)
|
||||
subdiag[k - 1] = c * subdiag[k-1] - s * z;
|
||||
|
||||
x = subdiag[k];
|
||||
z = -s * subdiag[k+1];
|
||||
|
||||
if (k < end - 1)
|
||||
subdiag[k + 1] = c * subdiag[k+1];
|
||||
|
||||
// apply the givens rotation to the unit matrix Q = Q * G
|
||||
// G only modifies the two columns k and k+1
|
||||
if (matrixQ)
|
||||
{
|
||||
#ifdef EIGEN_DEFAULT_TO_ROW_MAJOR
|
||||
#else
|
||||
int kn = k*n;
|
||||
int kn1 = (k+1)*n;
|
||||
#endif
|
||||
// let's do the product manually to avoid the need of temporaries...
|
||||
for (uint i=0; i<n; ++i)
|
||||
{
|
||||
#ifdef EIGEN_DEFAULT_TO_ROW_MAJOR
|
||||
Scalar matrixQ_i_k = matrixQ[i*n+k];
|
||||
matrixQ[i*n+k] = c * matrixQ_i_k - s * matrixQ[i*n+k+1];
|
||||
matrixQ[i*n+k+1] = s * matrixQ_i_k + c * matrixQ[i*n+k+1];
|
||||
#else
|
||||
Scalar matrixQ_i_k = matrixQ[i+kn];
|
||||
matrixQ[i+kn] = c * matrixQ_i_k - s * matrixQ[i+kn1];
|
||||
matrixQ[i+kn1] = s * matrixQ_i_k + c * matrixQ[i+kn1];
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_SELFADJOINTEIGENSOLVER_H
|
||||
|
Loading…
x
Reference in New Issue
Block a user