Matrix product refactoring (rhs products only).

Added strong inlines required for MSVC for proper inlining.
Added specializations for DiagonalMatrix products to RotationBase.
Added left- and righ-hand-side products with DiagonalMatrix to Transform.
RHS Transform products now return Matrix objects only.
Split the geo_transformations unit test. Some tests were not made for projectivities.
Removed unused variables from main.h that caused warnings.
This commit is contained in:
Hauke Heibel 2010-08-19 19:25:35 +02:00
parent d4b664c4cd
commit 55c7848877
7 changed files with 193 additions and 182 deletions

View File

@ -440,7 +440,7 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
}
/** Returns the expression of the sum of the vector \a other to each subvector of \c *this */
template<typename OtherDerived>
template<typename OtherDerived> EIGEN_STRONG_INLINE
CwiseBinaryOp<ei_scalar_sum_op<Scalar>,
ExpressionType,
typename ExtendedType<OtherDerived>::Type>

View File

@ -199,7 +199,7 @@ class CoeffBasedProduct
}
// Implicit conversion to the nested type (trigger the evaluation of the product)
operator const PlainObject& () const
EIGEN_STRONG_INLINE operator const PlainObject& () const
{
m_result.lazyAssign(*this);
return m_result;

View File

@ -362,7 +362,7 @@
#define EIGEN_MAKE_CWISE_BINARY_OP(METHOD,FUNCTOR) \
template<typename OtherDerived> \
inline const CwiseBinaryOp<FUNCTOR<Scalar>, Derived, OtherDerived> \
EIGEN_STRONG_INLINE const CwiseBinaryOp<FUNCTOR<Scalar>, Derived, OtherDerived> \
METHOD(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const \
{ \
return CwiseBinaryOp<FUNCTOR<Scalar>, Derived, OtherDerived>(derived(), other.derived()); \

View File

@ -56,8 +56,8 @@ class RotationBase
inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); }
/** \returns an equivalent rotation matrix
* This function is added to be conform with the Transform class' naming scheme.
*/
* This function is added to be conform with the Transform class' naming scheme.
*/
inline RotationMatrixType matrix() const { return derived().toRotationMatrix(); }
/** \returns the inverse rotation */
@ -87,6 +87,14 @@ class RotationBase
inline RotationMatrixType operator*(const EigenBase<OtherDerived>& l, const Derived& r)
{ return l.derived() * r.toRotationMatrix(); }
/** \returns the concatenation of a scaling \a l with the rotation \a r */
friend inline Transform<Scalar,Dim,Affine> operator*(const DiagonalMatrix<Scalar,Dim>& l, const Derived& r)
{
Transform<Scalar,Dim,Affine> res(r);
res.linear().applyOnTheLeft(l);
return res;
}
/** \returns the concatenation of the rotation \c *this with a transformation \a t */
template<int Mode>
inline Transform<Scalar,Dim,Mode> operator*(const Transform<Scalar,Dim,Mode>& t) const
@ -107,6 +115,18 @@ struct ei_rotation_base_generic_product_selector<RotationDerived,MatrixType,fals
{ return r.toRotationMatrix() * m; }
};
template<typename RotationDerived, typename Scalar, int Dim, int MaxDim>
struct ei_rotation_base_generic_product_selector< RotationDerived, DiagonalMatrix<Scalar,Dim,MaxDim>, false >
{
typedef Transform<Scalar,Dim,Affine> ReturnType;
inline static ReturnType run(const RotationDerived& r, const DiagonalMatrix<Scalar,Dim,MaxDim>& m)
{
ReturnType res(r);
res.linear() *= m;
return res;
}
};
template<typename RotationDerived,typename OtherVectorType>
struct ei_rotation_base_generic_product_selector<RotationDerived,OtherVectorType,true>
{

View File

@ -42,7 +42,8 @@ template< typename Other,
int Dim,
int HDim,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
int OtherCols=Other::ColsAtCompileTime,
bool IsProjective = (Mode==(int)Projective)>
struct ei_transform_right_product_impl;
template<typename TransformType> struct ei_transform_take_affine_part;
@ -55,9 +56,9 @@ template< typename Other,
int OtherCols=Other::ColsAtCompileTime>
struct ei_transform_left_product_impl;
template<typename Lhs,
typename Rhs,
bool AnyProjective = ei_is_any_projective<Lhs,Rhs>::value >
template< typename Lhs,
typename Rhs,
bool AnyProjective = ei_is_any_projective<Lhs,Rhs>::value >
struct ei_transform_transform_product_impl;
template< typename Other,
@ -353,8 +354,8 @@ public:
*/
// note: this function is defined here because some compilers cannot find the respective declaration
template<typename OtherDerived>
inline const typename ei_transform_right_product_impl<OtherDerived,Mode,_Dim,_Dim+1>::ResultType
operator * (const EigenBase<OtherDerived> &other) const
EIGEN_STRONG_INLINE const typename ei_transform_right_product_impl<OtherDerived,Mode,_Dim,_Dim+1>::ResultType
operator * (const EigenBase<OtherDerived> &other) const
{ return ei_transform_right_product_impl<OtherDerived,Mode,Dim,HDim>::run(*this,other.derived()); }
/** \returns the product expression of a transformation matrix \a a times a transform \a b
@ -366,9 +367,40 @@ public:
*/
template<typename OtherDerived> friend
inline const typename ei_transform_left_product_impl<OtherDerived,Mode,_Dim,_Dim+1>::ResultType
operator * (const EigenBase<OtherDerived> &a, const Transform &b)
operator * (const EigenBase<OtherDerived> &a, const Transform &b)
{ return ei_transform_left_product_impl<OtherDerived,Mode,Dim,HDim>::run(a.derived(),b); }
/** \returns The product expression of a transform \a a times a diagonal matrix \a b
*
* The rhs diagonal matrix is interpreted as an affine scaling transformation. The
* product results in a Transform of the same type (mode) as the lhs only if the lhs
* mode is no isometry. In that case, the returned transform is an affinity.
*/
friend inline const Transform<Scalar,Dim,((Mode==(int)Isometry)?Affine:(int)Mode)>
operator * (const Transform &a, const DiagonalMatrix<Scalar,Dim> &b)
{
Transform<Scalar,Dim,((Mode==(int)Isometry)?Affine:(int)Mode)> res(a);
res.linear() *= b;
return res;
}
/** \returns The product expression of a diagonal matrix \a a times a transform \a b
*
* The lhs diagonal matrix is interpreted as an affine scaling transformation. The
* product results in a Transform of the same type (mode) as the lhs only if the lhs
* mode is no isometry. In that case, the returned transform is an affinity.
*/
friend inline const Transform<Scalar,Dim,((Mode==(int)Isometry)?Affine:(int)Mode)>
operator * (const DiagonalMatrix<Scalar,Dim> &a, const Transform &b)
{
Transform<Scalar,Dim,((Mode==(int)Isometry)?Affine:(int)Mode)> res;
res.linear().noalias() = a*b.linear();
res.translation().noalias() = a*b.translation();
if (Mode!=int(AffineCompact))
res.matrix().row(Dim) = b.matrix().row(Dim);
return res;
}
template<typename OtherDerived>
inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }
@ -381,8 +413,8 @@ public:
/** Concatenates two different transformations */
template<int OtherMode>
inline const typename ei_transform_transform_product_impl<
Transform,Transform<Scalar,Dim,OtherMode> >::ResultType
operator * (const Transform<Scalar,Dim,OtherMode>& other) const
Transform,Transform<Scalar,Dim,OtherMode> >::ResultType
operator * (const Transform<Scalar,Dim,OtherMode>& other) const
{
return ei_transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode> >::run(*this,other);
}
@ -431,6 +463,8 @@ public:
inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
inline Transform operator*(const UniformScaling<Scalar>& s) const;
inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linear() *= s; return *this; }
template<typename Derived>
inline Transform& operator=(const RotationBase<Derived,Dim>& r);
template<typename Derived>
@ -582,7 +616,7 @@ Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const QMatrix&
m_matrix << other.m11(), other.m21(), other.dx(),
other.m12(), other.m22(), other.dy(),
0, 0, 1;
return *this;
return *this;
}
/** \returns a QMatrix from \c *this assuming the dimension is 2.
@ -621,7 +655,7 @@ Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const QTransfo
m_matrix << other.m11(), other.m21(), other.dx(),
other.m12(), other.m22(), other.dy(),
other.m13(), other.m23(), other.m33();
return *this;
return *this;
}
/** \returns a QTransform from \c *this assuming the dimension is 2.
@ -1058,15 +1092,15 @@ struct ei_transform_construct_from_matrix<Other, AffineCompact,Dim,HDim, HDim,HD
{ transform->matrix() = other.template block<Dim,HDim>(0,0); }
};
/*********************************************************
*** Specializations of operator* with a EigenBase ***
*********************************************************/
/**********************************************************
*** Specializations of operator* with rhs EigenBase ***
**********************************************************/
// ei_general_product_return_type is a generalization of ProductReturnType, for all types (including e.g. DiagonalBase...),
// instead of being restricted to MatrixBase.
template<typename Lhs, typename Rhs> struct ei_general_product_return_type;
template<typename D1, typename D2> struct ei_general_product_return_type<MatrixBase<D1>, MatrixBase<D2> >
: ProductReturnType<D1,D2> {};
: ProductReturnType<D1,D2> {};
template<typename Lhs, typename D2> struct ei_general_product_return_type<Lhs, MatrixBase<D2> >
{ typedef D2 Type; };
template<typename D1, typename Rhs> struct ei_general_product_return_type<MatrixBase<D1>, Rhs >
@ -1085,145 +1119,48 @@ struct ei_transform_product_result
};
};
// Projective * set of homogeneous column vectors
template<typename Other, int Dim, int HDim>
struct ei_transform_right_product_impl<Other,Projective, Dim,HDim, HDim, Dynamic>
template< typename Other, int Mode, int Dim, int HDim, int OtherCols >
struct ei_transform_right_product_impl<Other, Mode, Dim, HDim, HDim, OtherCols, true>
{
typedef Transform<typename Other::Scalar,Dim,Projective> TransformType;
typedef typename TransformType::MatrixType MatrixType;
typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
static ResultType run(const TransformType& tr, const Other& other)
{ return tr.matrix() * other; }
};
typedef typename Other::Scalar Scalar;
typedef typename Other::PlainObject ResultType;
// Projective * homogeneous column vector
template<typename Other, int Dim, int HDim>
struct ei_transform_right_product_impl<Other,Projective, Dim,HDim, HDim, 1>
{
typedef Transform<typename Other::Scalar,Dim,Projective> TransformType;
typedef typename TransformType::MatrixType MatrixType;
typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
static ResultType run(const TransformType& tr, const Other& other)
{ return tr.matrix() * other; }
};
// Projective * column vector
template<typename Other, int Dim, int HDim>
struct ei_transform_right_product_impl<Other,Projective, Dim,HDim, Dim, 1>
{
typedef Transform<typename Other::Scalar,Dim,Projective> TransformType;
typedef Matrix<typename Other::Scalar,HDim,1> ResultType;
static ResultType run(const TransformType& tr, const Other& other)
{ return tr.matrix().template block<HDim,Dim>(0,0) * other + tr.matrix().col(Dim); }
};
// Affine * column vector
template<typename Other, int Mode, int Dim, int HDim>
struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, Dim,1>
{
typedef Transform<typename Other::Scalar,Dim,Mode> TransformType;
typedef Matrix<typename Other::Scalar,Dim,1> ResultType;
static ResultType run(const TransformType& tr, const Other& other)
{ return tr.linear() * other + tr.translation(); }
};
// Affine * set of column vectors
// FIXME use a ReturnByValue to remove the temporary
template<typename Other, int Mode, int Dim, int HDim>
struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, Dim,Dynamic>
{
typedef Transform<typename Other::Scalar,Dim,Mode> TransformType;
typedef Matrix<typename Other::Scalar,Dim,Dynamic> ResultType;
static ResultType run(const TransformType& tr, const Other& other)
{ return (tr.linear() * other).colwise() + tr.translation(); }
};
// Affine * homogeneous column vector
// FIXME added for backward compatibility, but I'm not sure we should keep it
template<typename Other, int Mode, int Dim, int HDim>
struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, HDim,1>
{
typedef Transform<typename Other::Scalar,Dim,Mode> TransformType;
typedef Matrix<typename Other::Scalar,HDim,1> ResultType;
static ResultType run(const TransformType& tr, const Other& other)
{ return tr.matrix() * other; }
};
template<typename Other, int Dim, int HDim>
struct ei_transform_right_product_impl<Other,AffineCompact, Dim,HDim, HDim,1>
{
typedef Transform<typename Other::Scalar,Dim,AffineCompact> TransformType;
typedef Matrix<typename Other::Scalar,HDim,1> ResultType;
static ResultType run(const TransformType& tr, const Other& other)
EIGEN_STRONG_INLINE static ResultType run(const Transform<Scalar,Dim,Projective>& T, const Other& other)
{
ResultType res;
res.template head<HDim>() = tr.matrix() * other;
res.coeffRef(Dim) = other.coeff(Dim);
return T.matrix() * other;
}
};
// T * linear matrix => T
template<typename Other, int Mode, int Dim, int HDim>
struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, Dim,Dim>
template< typename Other, int Mode, int Dim, int HDim, int OtherRows, int OtherCols >
struct ei_transform_right_product_impl<Other, Mode, Dim, HDim, OtherRows, OtherCols, false>
{
typedef Transform<typename Other::Scalar,Dim,Mode> TransformType;
typedef typename TransformType::MatrixType MatrixType;
typedef TransformType ResultType;
static ResultType run(const TransformType& tr, const Other& other)
typedef typename Other::Scalar Scalar;
typedef typename Other::PlainObject ResultType;
EIGEN_STRONG_INLINE static ResultType run(const Transform<Scalar,Dim,Mode>& T, const Other& other)
{
TransformType res;
res.matrix().col(Dim) = tr.matrix().col(Dim);
res.linearExt().noalias() = (tr.linearExt() * other);
if(Mode==int(Affine))
res.matrix().row(Dim).template head<Dim>() = tr.matrix().row(Dim).template head<Dim>();
return res;
}
};
// T * affine matrix => T
template<typename Other, int Mode, int Dim, int HDim>
struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, Dim,HDim>
{
typedef Transform<typename Other::Scalar,Dim,Mode> TransformType;
typedef typename TransformType::MatrixType MatrixType;
typedef TransformType ResultType;
static ResultType run(const TransformType& tr, const Other& other)
{
TransformType res;
enum { Rows = Mode==int(Projective) ? HDim : Dim };
res.matrix().template block<Rows,HDim>(0,0).noalias() = (tr.linearExt() * other);
res.translationExt() += tr.translationExt();
if(Mode!=int(Affine))
res.makeAffine();
return res;
}
};
// T * generic matrix => Projective
template<typename Other, int Mode, int Dim, int HDim>
struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, HDim,HDim>
{
typedef Transform<typename Other::Scalar,Dim,Mode> TransformType;
typedef typename TransformType::MatrixType MatrixType;
typedef Transform<typename Other::Scalar,Dim,Projective> ResultType;
static ResultType run(const TransformType& tr, const Other& other)
{ return ResultType(tr.matrix() * other); }
};
// AffineCompact * generic matrix => Projective
template<typename Other, int Dim, int HDim>
struct ei_transform_right_product_impl<Other,AffineCompact, Dim,HDim, HDim,HDim>
{
typedef Transform<typename Other::Scalar,Dim,AffineCompact> TransformType;
typedef Transform<typename Other::Scalar,Dim,Projective> ResultType;
static ResultType run(const TransformType& tr, const Other& other)
{
ResultType res;
res.affine().noalias() = tr.matrix() * other;
res.makeAffine();
EIGEN_STATIC_ASSERT(OtherRows==Dim || OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
typedef Block<ResultType, Dim, OtherCols> TopLeftLhs;
typedef Block<Other, Dim, OtherCols> TopLeftRhs;
ResultType res(other.rows(),other.cols());
TopLeftLhs(res, 0, 0, Dim, other.cols()) =
( T.linear() * TopLeftRhs(other, 0, 0, Dim, other.cols()) ).colwise() +
T.translation();
// we need to take .rows() because OtherRows might be Dim or HDim
if (OtherRows==HDim)
res.row(other.rows()) = other.row(other.rows());
return res;
}
};
/**********************************************************
*** Specializations of operator* with lhs EigenBase ***
**********************************************************/
// generic HDim x HDim matrix * T => Projective
template<typename Other,int Mode, int Dim, int HDim>

View File

@ -27,6 +27,81 @@
#include <Eigen/LU>
#include <Eigen/SVD>
template<typename Scalar, int Mode> void non_projective_only(void)
{
/* this test covers the following files:
Cross.h Quaternion.h, Transform.cpp
*/
typedef Matrix<Scalar,2,2> Matrix2;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,4,4> Matrix4;
typedef Matrix<Scalar,2,1> Vector2;
typedef Matrix<Scalar,3,1> Vector3;
typedef Matrix<Scalar,4,1> Vector4;
typedef Quaternion<Scalar> Quaternionx;
typedef AngleAxis<Scalar> AngleAxisx;
typedef Transform<Scalar,2,Mode> Transform2;
typedef Transform<Scalar,3,Mode> Transform3;
typedef Transform<Scalar,2,Isometry> Isometry2;
typedef Transform<Scalar,3,Isometry> Isometry3;
typedef typename Transform3::MatrixType MatrixType;
typedef DiagonalMatrix<Scalar,2> AlignedScaling2;
typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
typedef Translation<Scalar,2> Translation2;
typedef Translation<Scalar,3> Translation3;
Scalar largeEps = test_precision<Scalar>();
if (ei_is_same_type<Scalar,float>::ret)
largeEps = 1e-2f;
Vector3 v0 = Vector3::Random(),
v1 = Vector3::Random();
Transform3 t0, t1, t2;
Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
Quaternionx q1, q2;
q1 = AngleAxisx(a, v0.normalized());
t0 = Transform3::Identity();
VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
t0.linear() = q1.toRotationMatrix();
v0 << 50, 2, 1;
t0.scale(v0);
VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).template head<3>().norm(), v0.x());
t0.setIdentity();
t1.setIdentity();
v1 << 1, 2, 3;
t0.linear() = q1.toRotationMatrix();
t0.pretranslate(v0);
t0.scale(v1);
t1.linear() = q1.conjugate().toRotationMatrix();
t1.prescale(v1.cwiseInverse());
t1.translate(-v0);
VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
t1.fromPositionOrientationScale(v0, q1, v1);
VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
VERIFY_IS_APPROX(t1*v1, t0*v1);
// translation * vector
t0.setIdentity();
t0.translate(v0);
VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1);
// AlignedScaling * vector
t0.setIdentity();
t0.scale(v0);
VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1);
}
template<typename Scalar, int Mode> void transformations(void)
{
/* this test covers the following files:
@ -42,6 +117,8 @@ template<typename Scalar, int Mode> void transformations(void)
typedef AngleAxis<Scalar> AngleAxisx;
typedef Transform<Scalar,2,Mode> Transform2;
typedef Transform<Scalar,3,Mode> Transform3;
typedef Transform<Scalar,2,Isometry> Isometry2;
typedef Transform<Scalar,3,Isometry> Isometry3;
typedef typename Transform3::MatrixType MatrixType;
typedef DiagonalMatrix<Scalar,2> AlignedScaling2;
typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
@ -115,17 +192,6 @@ template<typename Scalar, int Mode> void transformations(void)
t0 = Transform3::Identity();
VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
t0.linear() = q1.toRotationMatrix();
t1.setIdentity();
t1.linear() = q1.toRotationMatrix();
v0 << 50, 2, 1;//= ei_random_matrix<Vector3>().cwiseProduct(Vector3(10,2,0.5));
t0.scale(v0);
t1.prescale(v0);
VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).template head<3>().norm(), v0.x());
//VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x()));
t0.setIdentity();
t1.setIdentity();
v1 << 1, 2, 3;
@ -140,7 +206,6 @@ template<typename Scalar, int Mode> void transformations(void)
t1.fromPositionOrientationScale(v0, q1, v1);
VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
VERIFY_IS_APPROX(t1*v1, t0*v1);
t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix());
t1.setIdentity(); t1.scale(v0).rotate(q1);
@ -248,20 +313,20 @@ template<typename Scalar, int Mode> void transformations(void)
t0.setIdentity();
t0.prerotate(q1).prescale(v0).pretranslate(v0);
// translation * aligned scaling and transformation * mat
t1 = (Translation3(v0) * AlignedScaling3(v0)) * Matrix3(q1);
t1 = (Translation3(v0) * AlignedScaling3(v0)) * Transform3(q1);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// scaling * mat and translation * mat
t1 = Translation3(v0) * (AlignedScaling3(v0) * Matrix3(q1));
t1 = Translation3(v0) * (AlignedScaling3(v0) * Transform3(q1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity();
t0.scale(v0).translate(v0).rotate(q1);
// translation * mat and aligned scaling * transformation
t1 = AlignedScaling3(v0) * (Translation3(v0) * Matrix3(q1));
t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// transformation * aligned scaling
t0.scale(v0);
t1 = t1 * AlignedScaling3(v0);
t1 *= AlignedScaling3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// transformation * translation
t0.translate(v0);
@ -302,16 +367,6 @@ template<typename Scalar, int Mode> void transformations(void)
t1 = t1 * (q1 * AlignedScaling3(v1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// translation * vector
t0.setIdentity();
t0.translate(v0);
VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1);
// AlignedScaling * vector
t0.setIdentity();
t0.scale(v0);
VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1);
// test transform inversion
t0.setIdentity();
t0.translate(v0);
@ -327,11 +382,6 @@ template<typename Scalar, int Mode> void transformations(void)
t044.block(0,0,t0.matrix().rows(),4) = t0.matrix();
VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4));
// test extract rotation and aligned scaling
// t0.setIdentity();
// t0.translate(v0).rotate(q1).scale(v1);
// VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1);
Matrix3 mat_rotation, mat_scaling;
t0.setIdentity();
t0.translate(v0).rotate(q1).scale(v1);
@ -372,8 +422,12 @@ template<typename Scalar, int Mode> void transformations(void)
void test_geo_transformations()
{
for(int i = 0; i < g_repeat; i++) {
//CALL_SUBTEST_1(( transformations<double,Affine>() ));
//CALL_SUBTEST_2(( transformations<float,AffineCompact>() ));
CALL_SUBTEST_1(( transformations<double,Affine>() ));
CALL_SUBTEST_1(( non_projective_only<double,Affine>() ));
CALL_SUBTEST_2(( transformations<float,AffineCompact>() ));
CALL_SUBTEST_2(( non_projective_only<float,AffineCompact>() ));
CALL_SUBTEST_3(( transformations<double,Projective>() ));
}
}

View File

@ -118,7 +118,7 @@ namespace Eigen
for (uint ai=0 ; ai<ei_assert_list.size() ; ++ai) \
std::cerr << " " << ei_assert_list[ai] << "\n"; \
VERIFY(Eigen::should_raise_an_assert && # a); \
} catch (Eigen::ei_assert_exception e) { \
} catch (Eigen::ei_assert_exception) { \
Eigen::ei_push_assert = false; VERIFY(true); \
} \
Eigen::report_on_cerr_on_assert_failure = true; \
@ -144,7 +144,7 @@ namespace Eigen
a; \
VERIFY(Eigen::should_raise_an_assert && # a); \
} \
catch (Eigen::ei_assert_exception& e) { VERIFY(true); } \
catch (Eigen::ei_assert_exception&) { VERIFY(true); } \
Eigen::report_on_cerr_on_assert_failure = true; \
}