mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-06 19:29:08 +08:00
Move computation of eigenvalues from RealSchur to EigenSolver.
This commit is contained in:
parent
73d3a27667
commit
574ad9efbd
@ -68,7 +68,9 @@
|
||||
* The documentation for EigenSolver(const MatrixType&) contains an example of
|
||||
* the typical use of this class.
|
||||
*
|
||||
* \note this code was adapted from JAMA (public domain)
|
||||
* \note The implementation is adapted from
|
||||
* <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
|
||||
* Their code is based on EISPACK.
|
||||
*
|
||||
* \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
|
||||
*/
|
||||
@ -232,12 +234,13 @@ template<typename _MatrixType> class EigenSolver
|
||||
* The eigenvalues() and eigenvectors() functions can be used to retrieve
|
||||
* the computed eigendecomposition.
|
||||
*
|
||||
* The matrix is first reduced to Schur form. The Schur decomposition is
|
||||
* then used to compute the eigenvalues and eigenvectors.
|
||||
* The matrix is first reduced to real Schur form using the RealSchur
|
||||
* class. The Schur decomposition is then used to compute the eigenvalues
|
||||
* and eigenvectors.
|
||||
*
|
||||
* The cost of the computation is dominated by the cost of the Schur
|
||||
* decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$ is the size of
|
||||
* the matrix.
|
||||
* decomposition, which is very approximately \f$ 25n^3 \f$ where
|
||||
* \f$ n \f$ is the size of the matrix.
|
||||
*
|
||||
* This method reuses of the allocated data in the EigenSolver object.
|
||||
*
|
||||
@ -311,12 +314,31 @@ EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const MatrixType& matr
|
||||
|
||||
// Reduce to real Schur form.
|
||||
RealSchur<MatrixType> rs(matrix);
|
||||
MatrixType matH = rs.matrixT();
|
||||
MatrixType matT = rs.matrixT();
|
||||
m_eivec = rs.matrixU();
|
||||
m_eivalues = rs.eigenvalues();
|
||||
|
||||
// Compute eigenvalues from matT
|
||||
m_eivalues.resize(matrix.cols());
|
||||
int i = 0;
|
||||
while (i < matrix.cols())
|
||||
{
|
||||
if (i == matrix.cols() - 1 || matT.coeff(i+1, i) == Scalar(0))
|
||||
{
|
||||
m_eivalues.coeffRef(i) = matT.coeff(i, i);
|
||||
++i;
|
||||
}
|
||||
else
|
||||
{
|
||||
Scalar p = Scalar(0.5) * (matT.coeff(i, i) - matT.coeff(i+1, i+1));
|
||||
Scalar z = ei_sqrt(ei_abs(p * p + matT.coeff(i+1, i) * matT.coeff(i, i+1)));
|
||||
m_eivalues.coeffRef(i) = ComplexScalar(matT.coeff(i+1, i+1) + p, z);
|
||||
m_eivalues.coeffRef(i+1) = ComplexScalar(matT.coeff(i+1, i+1) + p, -z);
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
|
||||
// Compute eigenvectors.
|
||||
hqr2_step2(matH);
|
||||
hqr2_step2(matT);
|
||||
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
|
@ -53,7 +53,7 @@
|
||||
* given matrix. Alternatively, you can use the RealSchur(const MatrixType&)
|
||||
* constructor which computes the real Schur decomposition at construction
|
||||
* time. Once the decomposition is computed, you can use the matrixU() and
|
||||
* matrixT() functions to retrieve the matrices U and V in the decomposition.
|
||||
* matrixT() functions to retrieve the matrices U and T in the decomposition.
|
||||
*
|
||||
* The documentation of RealSchur(const MatrixType&) contains an example of
|
||||
* the typical use of this class.
|
||||
@ -93,7 +93,6 @@ template<typename _MatrixType> class RealSchur
|
||||
RealSchur(int size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
|
||||
: m_matT(size, size),
|
||||
m_matU(size, size),
|
||||
m_eivalues(size),
|
||||
m_isInitialized(false)
|
||||
{ }
|
||||
|
||||
@ -109,7 +108,6 @@ template<typename _MatrixType> class RealSchur
|
||||
RealSchur(const MatrixType& matrix)
|
||||
: m_matT(matrix.rows(),matrix.cols()),
|
||||
m_matU(matrix.rows(),matrix.cols()),
|
||||
m_eivalues(matrix.rows()),
|
||||
m_isInitialized(false)
|
||||
{
|
||||
compute(matrix);
|
||||
@ -147,15 +145,6 @@ template<typename _MatrixType> class RealSchur
|
||||
return m_matT;
|
||||
}
|
||||
|
||||
/** \brief Returns vector of eigenvalues.
|
||||
*
|
||||
* This function will likely be removed. */
|
||||
const EigenvalueType& eigenvalues() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "RealSchur is not initialized.");
|
||||
return m_eivalues;
|
||||
}
|
||||
|
||||
/** \brief Computes Schur decomposition of given matrix.
|
||||
*
|
||||
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
||||
@ -176,7 +165,6 @@ template<typename _MatrixType> class RealSchur
|
||||
|
||||
MatrixType m_matT;
|
||||
MatrixType m_matU;
|
||||
EigenvalueType m_eivalues;
|
||||
bool m_isInitialized;
|
||||
|
||||
typedef Matrix<Scalar,3,1> Vector3s;
|
||||
@ -200,7 +188,6 @@ void RealSchur<MatrixType>::compute(const MatrixType& matrix)
|
||||
HessenbergDecomposition<MatrixType> hess(matrix);
|
||||
m_matT = hess.matrixH();
|
||||
m_matU = hess.matrixQ();
|
||||
m_eivalues.resize(matrix.rows());
|
||||
|
||||
// Step 2. Reduce to real Schur form
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> ColumnVectorType;
|
||||
@ -226,7 +213,6 @@ void RealSchur<MatrixType>::compute(const MatrixType& matrix)
|
||||
m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
|
||||
if (iu > 0)
|
||||
m_matT.coeffRef(iu, iu-1) = Scalar(0);
|
||||
m_eivalues.coeffRef(iu) = ComplexScalar(m_matT.coeff(iu,iu), 0.0);
|
||||
iu--;
|
||||
iter = 0;
|
||||
}
|
||||
@ -289,15 +275,14 @@ inline void RealSchur<MatrixType>::splitOffTwoRows(int iu, Scalar exshift)
|
||||
|
||||
// The eigenvalues of the 2x2 matrix [a b; c d] are
|
||||
// trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
|
||||
Scalar w = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
|
||||
Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
|
||||
Scalar q = p * p + w; // q = tr^2 / 4 - det = discr/4
|
||||
Scalar z = ei_sqrt(ei_abs(q));
|
||||
Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4
|
||||
m_matT.coeffRef(iu,iu) += exshift;
|
||||
m_matT.coeffRef(iu-1,iu-1) += exshift;
|
||||
|
||||
if (q >= 0) // Two real eigenvalues
|
||||
{
|
||||
Scalar z = ei_sqrt(ei_abs(q));
|
||||
PlanarRotation<Scalar> rot;
|
||||
if (p >= 0)
|
||||
rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
|
||||
@ -308,14 +293,6 @@ inline void RealSchur<MatrixType>::splitOffTwoRows(int iu, Scalar exshift)
|
||||
m_matT.block(0, 0, iu+1, size).applyOnTheRight(iu-1, iu, rot);
|
||||
m_matT.coeffRef(iu, iu-1) = Scalar(0);
|
||||
m_matU.applyOnTheRight(iu-1, iu, rot);
|
||||
|
||||
m_eivalues.coeffRef(iu-1) = ComplexScalar(m_matT.coeff(iu-1, iu-1), 0.0);
|
||||
m_eivalues.coeffRef(iu) = ComplexScalar(m_matT.coeff(iu, iu), 0.0);
|
||||
}
|
||||
else // // Pair of complex conjugate eigenvalues
|
||||
{
|
||||
m_eivalues.coeffRef(iu-1) = ComplexScalar(m_matT.coeff(iu,iu) + p, z);
|
||||
m_eivalues.coeffRef(iu) = ComplexScalar(m_matT.coeff(iu,iu) + p, -z);
|
||||
}
|
||||
|
||||
if (iu > 1)
|
||||
|
Loading…
x
Reference in New Issue
Block a user