mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-19 08:09:36 +08:00
doc: add a "non stable" warning for parts which are not part
of the stable API yet and a couple of other minor doc updates...
This commit is contained in:
parent
a040b7f15d
commit
582c1f92c8
@ -44,7 +44,7 @@ template <typename T, int Size> struct ei_aligned_array<T,Size,false>
|
||||
T array[Size];
|
||||
};
|
||||
|
||||
/** \internal allocates \a size * sizeof(\a T) bytes with a 16 bytes based alignment */
|
||||
/** \internal allocates \a size * sizeof(\a T) bytes with 16 bytes alignment */
|
||||
template<typename T>
|
||||
inline T* ei_aligned_malloc(size_t size)
|
||||
{
|
||||
@ -91,7 +91,7 @@ inline static int ei_alignmentOffset(const Scalar* ptr, int maxOffset)
|
||||
/** \internal
|
||||
* ei_alloc_stack(TYPE,SIZE) allocates sizeof(TYPE)*SIZE bytes on the stack if sizeof(TYPE)*SIZE is
|
||||
* smaller than EIGEN_STACK_ALLOCATION_LIMIT. Otherwise the memory is allocated using the operator new.
|
||||
* Data allocated with ei_alloc_stack \b must be freed calling ei_free_stack(PTR,TYPE,SIZE).
|
||||
* Data allocated with ei_alloc_stack \b must be freed by calling ei_free_stack(PTR,TYPE,SIZE).
|
||||
* \code
|
||||
* float * data = ei_alloc_stack(float,array.size());
|
||||
* // ...
|
||||
@ -108,15 +108,15 @@ inline static int ei_alignmentOffset(const Scalar* ptr, int maxOffset)
|
||||
|
||||
/** \class WithAlignedOperatorNew
|
||||
*
|
||||
* \brief Enforces inherited classes to be 16 bytes aligned when dynamicalled allocated with operator new
|
||||
* \brief Enforces instances of inherited classes to be 16 bytes aligned when allocated with operator new
|
||||
*
|
||||
* When Eigen's explicit vectorization is enabled, Eigen assumes that some fixed sizes types are aligned
|
||||
* on a 16 bytes boundary. Such types include:
|
||||
* on a 16 bytes boundary. Those include all Matrix types having a sizeof multiple of 16 bytes, e.g.:
|
||||
* - Vector2d, Vector4f, Vector4i, Vector4d,
|
||||
* - Matrix2d, Matrix4f, Matrix4i, Matrix4d,
|
||||
* - etc.
|
||||
* When objects are statically allocated, the compiler will automatically and always enforces 16 bytes
|
||||
* alignment of the data. However some troubles might appear when data are dynamically allocated.
|
||||
* When an object is statically allocated, the compiler will automatically and always enforces 16 bytes
|
||||
* alignment of the data when needed. However some troubles might appear when data are dynamically allocated.
|
||||
* Let's pick an example:
|
||||
* \code
|
||||
* struct Foo {
|
||||
@ -130,8 +130,8 @@ inline static int ei_alignmentOffset(const Scalar* ptr, int maxOffset)
|
||||
* pObj2->some_vector = Vector4f(..); // => !! might segfault !!
|
||||
* \endcode
|
||||
* Here, the problem is that operator new is not aware of the compile time alignment requirement of the
|
||||
* type Vector4f (and hence of the type Foo). Therefore "new Foo" does not necessarily returned a 16 bytes
|
||||
* aligned pointer. The purpose of the class WithAlignedOperatorNew is exactly to overcome this issue, by
|
||||
* type Vector4f (and hence of the type Foo). Therefore "new Foo" does not necessarily returns a 16 bytes
|
||||
* aligned pointer. The purpose of the class WithAlignedOperatorNew is exactly to overcome this issue by
|
||||
* overloading the operator new to return aligned data when the vectorization is enabled.
|
||||
* Here is a similar safe example:
|
||||
* \code
|
||||
@ -139,12 +139,9 @@ inline static int ei_alignmentOffset(const Scalar* ptr, int maxOffset)
|
||||
* char dummy;
|
||||
* Vector4f some_vector;
|
||||
* };
|
||||
* Foo obj1; // static allocation
|
||||
* obj1.some_vector = Vector4f(..); // => OK
|
||||
*
|
||||
* Foo *pObj2 = new Foo; // dynamic allocation
|
||||
* pObj2->some_vector = Vector4f(..); // => SAFE !
|
||||
* \endcode
|
||||
* \endcode
|
||||
*
|
||||
* \sa class ei_new_allocator
|
||||
*/
|
||||
@ -172,7 +169,7 @@ struct WithAlignedOperatorNew
|
||||
|
||||
void operator delete(void * ptr) { free(ptr); }
|
||||
void operator delete[](void * ptr) { free(ptr); }
|
||||
|
||||
|
||||
#endif
|
||||
};
|
||||
|
||||
@ -190,14 +187,14 @@ struct ei_with_aligned_operator_new<T,SizeAtCompileTime,false> {};
|
||||
* STL allocator simply wrapping operators new[] and delete[]. Unlike GCC's default new_allocator,
|
||||
* ei_new_allocator call operator new on the type \a T and not the general new operator ignoring
|
||||
* overloaded version of operator new.
|
||||
*
|
||||
*
|
||||
* Example:
|
||||
* \code
|
||||
* // Vector4f requires 16 bytes alignment:
|
||||
* std::vector<Vector4f,ei_new_allocator<Vector4f> > dataVec4;
|
||||
* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
|
||||
* std::vector<Vector3f> dataVec3;
|
||||
*
|
||||
*
|
||||
* struct Foo : WithAlignedOperatorNew {
|
||||
* char dummy;
|
||||
* Vector4f some_vector;
|
||||
|
@ -26,6 +26,7 @@
|
||||
#define EIGEN_ALIGNEDBOX_H
|
||||
|
||||
/** \geometry_module \ingroup GeometryModule
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class AlignedBox
|
||||
*
|
||||
|
@ -26,6 +26,7 @@
|
||||
#define EIGEN_EIGENSOLVER_H
|
||||
|
||||
/** \ingroup QR_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class EigenSolver
|
||||
*
|
||||
|
@ -26,6 +26,7 @@
|
||||
#define EIGEN_HESSENBERGDECOMPOSITION_H
|
||||
|
||||
/** \ingroup QR_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class HessenbergDecomposition
|
||||
*
|
||||
|
@ -26,6 +26,7 @@
|
||||
#define EIGEN_QR_H
|
||||
|
||||
/** \ingroup QR_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class QR
|
||||
*
|
||||
|
@ -26,6 +26,7 @@
|
||||
#define EIGEN_SELFADJOINTEIGENSOLVER_H
|
||||
|
||||
/** \qr_module \ingroup QR_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class SelfAdjointEigenSolver
|
||||
*
|
||||
@ -225,7 +226,7 @@ void SelfAdjointEigenSolver<MatrixType>::
|
||||
compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors)
|
||||
{
|
||||
ei_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows());
|
||||
|
||||
|
||||
// Compute the cholesky decomposition of matB = L L'
|
||||
LLT<MatrixType> cholB(matB);
|
||||
|
||||
|
@ -26,6 +26,7 @@
|
||||
#define EIGEN_TRIDIAGONALIZATION_H
|
||||
|
||||
/** \ingroup QR_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class Tridiagonalization
|
||||
*
|
||||
@ -219,7 +220,7 @@ void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType&
|
||||
// i.e., A = H' A H where H = I - h v v' and v = matA.col(i).end(n-i-1)
|
||||
|
||||
matA.col(i).coeffRef(i+1) = 1;
|
||||
|
||||
|
||||
/* This is the initial algorithm which minimize operation counts and maximize
|
||||
* the use of Eigen's expression. Unfortunately, the first matrix-vector product
|
||||
* using Part<Lower|Selfadjoint> is very very slow */
|
||||
@ -284,7 +285,7 @@ void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType&
|
||||
|
||||
hCoeffs.end(n-i-1) += (h * Scalar(-0.5) * matA.col(i).end(n-i-1).dot(hCoeffs.end(n-i-1)))
|
||||
* matA.col(i).end(n-i-1);
|
||||
|
||||
|
||||
const Scalar* EIGEN_RESTRICT pb = &matA.coeffRef(0,i);
|
||||
const Scalar* EIGEN_RESTRICT pa = (&hCoeffs.coeffRef(0)) - 1;
|
||||
for (int j1=i+1; j1<n; ++j1)
|
||||
@ -295,11 +296,11 @@ void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType&
|
||||
{
|
||||
int alignedStart = (starti) + ei_alignmentOffset(&matA.coeffRef(starti,j1), n-starti);
|
||||
alignedEnd = alignedStart + ((n-alignedStart)/PacketSize)*PacketSize;
|
||||
|
||||
|
||||
for (int i1=starti; i1<alignedStart; ++i1)
|
||||
matA.coeffRef(i1,j1) -= matA.coeff(i1,i)*ei_conj(hCoeffs.coeff(j1-1))
|
||||
+ hCoeffs.coeff(i1-1)*ei_conj(matA.coeff(j1,i));
|
||||
|
||||
|
||||
Packet tmp0 = ei_pset1(hCoeffs.coeff(j1-1));
|
||||
Packet tmp1 = ei_pset1(matA.coeff(j1,i));
|
||||
Scalar* pc = &matA.coeffRef(0,j1);
|
||||
|
@ -26,6 +26,7 @@
|
||||
#define EIGEN_SVD_H
|
||||
|
||||
/** \ingroup SVD_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class SVD
|
||||
*
|
||||
|
@ -207,7 +207,8 @@ ALIASES = "only_for_vectors=This is only for vectors (either row-
|
||||
"regression_module=This is defined in the %Regression module. \code #include <Eigen/Regression> \endcode" \
|
||||
"addexample=\anchor" \
|
||||
"label=\bug" \
|
||||
"redstar=<a href='#warningarraymodule' style='color:red;text-decoration: none;'><span style='color:red'>*</span></a>"
|
||||
"redstar=<a href='#warningarraymodule' style='color:red;text-decoration: none;'><span style='color:red'>*</span></a>" \
|
||||
"nonstableyet=\warning This class/function is not considered to be part of the stable public API yet. Some (minor) changes might happen in future releases."
|
||||
|
||||
# Set the OPTIMIZE_OUTPUT_FOR_C tag to YES if your project consists of C
|
||||
# sources only. Doxygen will then generate output that is more tailored for C.
|
||||
|
@ -67,7 +67,7 @@ might still be interesting to write generic and efficient algorithms taking as i
|
||||
kind of transformations.
|
||||
|
||||
Any of the above transformation types can be converted to any other types of the same nature,
|
||||
or to a more generic type. Here are come additional examples:
|
||||
or to a more generic type. Here are some additional examples:
|
||||
<table class="tutorial_code">
|
||||
<tr><td>\code
|
||||
Rotation2Df r = Matrix2f(..); // assumes a pure rotation matrix
|
||||
@ -176,7 +176,7 @@ t.pretranslate(Vector_(tx,ty,..));
|
||||
t *= Translation_(tx,ty,..);
|
||||
t = Translation_(tx,ty,..) * t;
|
||||
\endcode</td></tr>
|
||||
<tr><td>\b Rotation \n <em class="note">In 2D, any_rotation can also \n be an angle in radian</em></td><td>\code
|
||||
<tr><td>\b Rotation \n <em class="note">In 2D and for the procedural API, any_rotation can also \n be an angle in radian</em></td><td>\code
|
||||
t.rotate(any_rotation);
|
||||
t.prerotate(any_rotation);
|
||||
\endcode</td><td>\code
|
||||
@ -216,7 +216,7 @@ t = Translation_(..) * t * RotationType(..) * Translation_(..) * Scaling_(..);
|
||||
<table class="tutorial_code">
|
||||
<tr><td style="max-width:30em;">
|
||||
Euler angles might be convenient to create rotation objects.
|
||||
On the other hand, since there exist 24 differents convensions,they are pretty confusing to use. This example shows how
|
||||
On the other hand, since there exist 24 differents convension,they are pretty confusing to use. This example shows how
|
||||
to create a rotation matrix according to the 2-1-2 convention.</td><td>\code
|
||||
Matrix3f m;
|
||||
m = AngleAxisf(angle1, Vector3f::UnitZ())
|
||||
|
Loading…
x
Reference in New Issue
Block a user