mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-11 11:19:02 +08:00
Implement a blocked upper-bidiagonalization algorithm. The computeUnblocked function is currently for benchmarking purpose.
This commit is contained in:
parent
d1c48f1606
commit
5864e3fbd5
@ -31,7 +31,7 @@ template<typename _MatrixType> class UpperBidiagonalization
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
|
||||
typedef BandMatrix<RealScalar, ColsAtCompileTime, ColsAtCompileTime, 1, 0> BidiagonalType;
|
||||
typedef BandMatrix<RealScalar, ColsAtCompileTime, ColsAtCompileTime, 1, 0, RowMajor> BidiagonalType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, 1> DiagVectorType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTimeMinusOne, 1> SuperDiagVectorType;
|
||||
typedef HouseholderSequence<
|
||||
@ -61,6 +61,7 @@ template<typename _MatrixType> class UpperBidiagonalization
|
||||
}
|
||||
|
||||
UpperBidiagonalization& compute(const MatrixType& matrix);
|
||||
UpperBidiagonalization& computeUnblocked(const MatrixType& matrix);
|
||||
|
||||
const MatrixType& householder() const { return m_householder; }
|
||||
const BidiagonalType& bidiagonal() const { return m_bidiagonal; }
|
||||
@ -85,45 +86,297 @@ template<typename _MatrixType> class UpperBidiagonalization
|
||||
bool m_isInitialized;
|
||||
};
|
||||
|
||||
template<typename _MatrixType>
|
||||
UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix)
|
||||
{
|
||||
Index rows = matrix.rows();
|
||||
Index cols = matrix.cols();
|
||||
|
||||
eigen_assert(rows >= cols && "UpperBidiagonalization is only for matrices satisfying rows>=cols.");
|
||||
|
||||
m_householder = matrix;
|
||||
|
||||
ColVectorType temp(rows);
|
||||
/** \internal
|
||||
* Helper routine for the block bidiagonal reduction.
|
||||
* This function reduces to bidiagonal form the left \c rows x \a blockSize vertical
|
||||
* and \a blockSize x \c cols horizontal panels of the \a A. The bottom-right block
|
||||
* is left unchanged, and the Arices X and Y.
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
void upperbidiagonalization_inplace_helper(MatrixType& A,
|
||||
typename MatrixType::RealScalar *diagonal,
|
||||
typename MatrixType::RealScalar *upper_diagonal,
|
||||
typename MatrixType::Index bs,
|
||||
Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic> > X,
|
||||
Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic> > Y)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Ref<Matrix<Scalar, Dynamic, 1> > SubColumnType;
|
||||
typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, InnerStride<> > SubRowType;
|
||||
typedef Ref<Matrix<Scalar, Dynamic, Dynamic> > SubMatType;
|
||||
|
||||
Index brows = A.rows();
|
||||
Index bcols = A.cols();
|
||||
|
||||
Scalar tau_u, tau_u_prev(0), tau_v;
|
||||
|
||||
for(Index k = 0; k < bs; ++k)
|
||||
{
|
||||
Index remainingRows = brows - k;
|
||||
Index remainingSizeInBlock = bs - k - 1;
|
||||
Index remainingCols = bcols - k - 1;
|
||||
|
||||
SubMatType X_k1( X.block(k,0, remainingRows,k) );
|
||||
SubMatType V_k1( A.block(k,0, remainingRows,k) );
|
||||
|
||||
// 1 - update the k-th column of A
|
||||
SubColumnType v_k = A.col(k).tail(remainingRows);
|
||||
v_k -= V_k1 * Y.row(k).head(k).adjoint();
|
||||
if(k) v_k -= X_k1 * A.col(k).head(k);
|
||||
|
||||
// 2 - construct left Householder transform in-place
|
||||
v_k.makeHouseholderInPlace(tau_v, diagonal[k]);
|
||||
|
||||
if(k+1<bcols)
|
||||
{
|
||||
SubMatType Y_k ( Y.block(k+1,0, remainingCols, k+1) );
|
||||
SubMatType U_k1 ( A.block(0,k+1, k,remainingCols) );
|
||||
|
||||
// this eases the application of Householder transforAions
|
||||
// A(k,k) will store tau_v later
|
||||
A(k,k) = Scalar(1);
|
||||
|
||||
// 3 - Compute y_k^T = tau_v * ( A^T*v_k - Y_k-1*V_k-1^T*v_k - U_k-1*X_k-1^T*v_k )
|
||||
{
|
||||
SubColumnType y_k( Y.col(k).tail(remainingCols) );
|
||||
|
||||
// let's use the begining of column k of Y as a temporary vector
|
||||
SubColumnType tmp( Y.col(k).head(k) );
|
||||
y_k.noalias() = A.block(k,k+1, remainingRows,remainingCols).adjoint() * v_k; // bottleneck
|
||||
tmp.noalias() = V_k1.adjoint() * v_k;
|
||||
y_k.noalias() -= Y_k.leftCols(k) * tmp;
|
||||
tmp.noalias() = X_k1.adjoint() * v_k;
|
||||
y_k.noalias() -= U_k1.adjoint() * tmp;
|
||||
y_k *= numext::conj(tau_v);
|
||||
}
|
||||
|
||||
// 4 - update k-th row of A (it will become u_k)
|
||||
SubRowType u_k( A.row(k).tail(remainingCols) );
|
||||
u_k = u_k.conjugate();
|
||||
{
|
||||
u_k -= Y_k * A.row(k).head(k+1).adjoint();
|
||||
if(k) u_k -= U_k1.adjoint() * X.row(k).head(k).adjoint();
|
||||
}
|
||||
|
||||
// 5 - construct right Householder transform in-placecols
|
||||
u_k.makeHouseholderInPlace(tau_u, upper_diagonal[k]);
|
||||
|
||||
// this eases the application of Householder transforAions
|
||||
// A(k,k+1) will store tau_u later
|
||||
A(k,k+1) = Scalar(1);
|
||||
|
||||
// 6 - Compute x_k = tau_u * ( A*u_k - X_k-1*U_k-1^T*u_k - V_k*Y_k^T*u_k )
|
||||
{
|
||||
SubColumnType x_k ( X.col(k).tail(remainingRows-1) );
|
||||
|
||||
// let's use the begining of column k of X as a temporary vectors
|
||||
// note that tmp0 and tmp1 overlaps
|
||||
SubColumnType tmp0 ( X.col(k).head(k) ),
|
||||
tmp1 ( X.col(k).head(k+1) );
|
||||
|
||||
x_k.noalias() = A.block(k+1,k+1, remainingRows-1,remainingCols) * u_k.transpose(); // bottleneck
|
||||
tmp0.noalias() = U_k1 * u_k.transpose();
|
||||
x_k.noalias() -= X_k1.bottomRows(remainingRows-1) * tmp0;
|
||||
tmp1.noalias() = Y_k.adjoint() * u_k.transpose();
|
||||
x_k.noalias() -= A.block(k+1,0, remainingRows-1,k+1) * tmp1;
|
||||
x_k *= numext::conj(tau_u);
|
||||
tau_u = numext::conj(tau_u);
|
||||
u_k = u_k.conjugate();
|
||||
}
|
||||
|
||||
if(k>0) A.coeffRef(k-1,k) = tau_u_prev;
|
||||
tau_u_prev = tau_u;
|
||||
}
|
||||
else
|
||||
A.coeffRef(k-1,k) = tau_u_prev;
|
||||
|
||||
A.coeffRef(k,k) = tau_v;
|
||||
}
|
||||
|
||||
if(bs<bcols)
|
||||
A.coeffRef(bs-1,bs) = tau_u_prev;
|
||||
|
||||
// update A22
|
||||
if(bcols>bs && brows>bs)
|
||||
{
|
||||
SubMatType A22( A.bottomRightCorner(brows-bs,bcols-bs) );
|
||||
SubMatType A21( A.block(bs,0, brows-bs,bs) );
|
||||
SubMatType A12( A.block(0,bs, bs, bcols-bs) );
|
||||
Scalar tmp = A12(bs-1,0);
|
||||
A12(bs-1,0) = 1;
|
||||
A22.noalias() -= A21 * Y.topLeftCorner(bcols,bs).bottomRows(bcols-bs).adjoint();
|
||||
A22.noalias() -= X.topLeftCorner(brows,bs).bottomRows(brows-bs) * A12;
|
||||
A12(bs-1,0) = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal
|
||||
*
|
||||
* Implementation of a block-bidiagonal reduction.
|
||||
* It is based on the following paper:
|
||||
* The Design of a Parallel Dense Linear Algebra Software Library: Reduction to Hessenberg, Tridiagonal, and Bidiagonal Form.
|
||||
* by Jaeyoung Choi, Jack J. Dongarra, David W. Walker. (1995)
|
||||
* section 3.3
|
||||
*/
|
||||
template<typename MatrixType, typename BidiagType>
|
||||
void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagonal,
|
||||
typename MatrixType::Index maxBlockSize=32,
|
||||
typename MatrixType::Scalar* tempData = 0)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
|
||||
|
||||
Index rows = A.rows();
|
||||
Index cols = A.cols();
|
||||
Index size = (std::min)(rows, cols);
|
||||
|
||||
typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixType::MaxColsAtCompileTime,1> TempType;
|
||||
TempType tempVector;
|
||||
if(tempData==0)
|
||||
{
|
||||
tempVector.resize(cols);
|
||||
tempData = tempVector.data();
|
||||
}
|
||||
|
||||
Matrix<Scalar,Dynamic,Dynamic,ColMajor> X(rows,maxBlockSize), Y(cols, maxBlockSize);
|
||||
X.setOnes();
|
||||
Y.setOnes();
|
||||
|
||||
Index blockSize = (std::min)(maxBlockSize,size);
|
||||
|
||||
|
||||
|
||||
Index k = 0;
|
||||
for (k = 0; k < size; k += blockSize)
|
||||
{
|
||||
Index bs = (std::min)(size-k,blockSize); // actual size of the block
|
||||
Index tcols = cols - k - bs; // trailing columns
|
||||
Index trows = rows - k - bs; // trailing rows
|
||||
Index brows = rows - k; // rows of the block
|
||||
Index bcols = cols - k; // columns of the block
|
||||
|
||||
// partition the matrix A:
|
||||
//
|
||||
// | A00 A01 A02 |
|
||||
// | |
|
||||
// A = | A10 A11 A12 |
|
||||
// | |
|
||||
// | A20 A21 A22 |
|
||||
//
|
||||
// where A11 is a bs x bs diagonal block,
|
||||
// and performs the bidiagonalization of A11, A21, A12, without updating A22.
|
||||
//
|
||||
// A22 will be updated in a second stage using matrices X and Y and level 3 operations:
|
||||
// A22 -= V*Y^T - X*U^T
|
||||
// where V and U contains the left and right Householder vectors
|
||||
//
|
||||
// Finally, the algorithm continue on the updated A22.
|
||||
|
||||
|
||||
|
||||
// Let:
|
||||
// | A11 A12 |
|
||||
// B = | |
|
||||
// | A21 A22 |
|
||||
BlockType B = A.block(k,k,brows,bcols);
|
||||
upperbidiagonalization_inplace_helper<BlockType>(B,
|
||||
&(bidiagonal.template diagonal<0>().coeffRef(k)),
|
||||
&(bidiagonal.template diagonal<1>().coeffRef(k)),
|
||||
bs,
|
||||
X.topLeftCorner(brows,bs),
|
||||
Y.topLeftCorner(bcols,bs)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// Standard upper bidiagonalization without fancy optimizations
|
||||
// This version should be faster for small matrix size
|
||||
template<typename MatrixType, typename BidiagType>
|
||||
void upperbidiagonalization_inplace_unblocked(MatrixType& mat, BidiagType& bidiagonal,
|
||||
typename MatrixType::Scalar* tempData = 0)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
Index rows = mat.rows();
|
||||
Index cols = mat.cols();
|
||||
Index size = (std::min)(rows, cols);
|
||||
|
||||
typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixType::MaxRowsAtCompileTime,1> TempType;
|
||||
TempType tempVector;
|
||||
if(tempData==0)
|
||||
{
|
||||
tempVector.resize(rows);
|
||||
tempData = tempVector.data();
|
||||
}
|
||||
|
||||
for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k)
|
||||
{
|
||||
Index remainingRows = rows - k;
|
||||
Index remainingCols = cols - k - 1;
|
||||
|
||||
// construct left householder transform in-place in m_householder
|
||||
m_householder.col(k).tail(remainingRows)
|
||||
.makeHouseholderInPlace(m_householder.coeffRef(k,k),
|
||||
m_bidiagonal.template diagonal<0>().coeffRef(k));
|
||||
// apply householder transform to remaining part of m_householder on the left
|
||||
m_householder.bottomRightCorner(remainingRows, remainingCols)
|
||||
.applyHouseholderOnTheLeft(m_householder.col(k).tail(remainingRows-1),
|
||||
m_householder.coeff(k,k),
|
||||
temp.data());
|
||||
// construct left householder transform in-place in A
|
||||
mat.col(k).tail(remainingRows)
|
||||
.makeHouseholderInPlace(mat.coeffRef(k,k), bidiagonal.template diagonal<0>().coeffRef(k));
|
||||
// apply householder transform to remaining part of A on the left
|
||||
mat.bottomRightCorner(remainingRows, remainingCols)
|
||||
.applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), mat.coeff(k,k), tempData);
|
||||
|
||||
if(k == cols-1) break;
|
||||
|
||||
// construct right householder transform in-place in m_householder
|
||||
m_householder.row(k).tail(remainingCols)
|
||||
.makeHouseholderInPlace(m_householder.coeffRef(k,k+1),
|
||||
m_bidiagonal.template diagonal<1>().coeffRef(k));
|
||||
// apply householder transform to remaining part of m_householder on the left
|
||||
m_householder.bottomRightCorner(remainingRows-1, remainingCols)
|
||||
.applyHouseholderOnTheRight(m_householder.row(k).tail(remainingCols-1).transpose(),
|
||||
m_householder.coeff(k,k+1),
|
||||
temp.data());
|
||||
|
||||
// construct right householder transform in-place in mat
|
||||
mat.row(k).tail(remainingCols)
|
||||
.makeHouseholderInPlace(mat.coeffRef(k,k+1), bidiagonal.template diagonal<1>().coeffRef(k));
|
||||
// apply householder transform to remaining part of mat on the left
|
||||
mat.bottomRightCorner(remainingRows-1, remainingCols)
|
||||
.applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).transpose(), mat.coeff(k,k+1), tempData);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename _MatrixType>
|
||||
UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::computeUnblocked(const _MatrixType& matrix)
|
||||
{
|
||||
Index rows = matrix.rows();
|
||||
Index cols = matrix.cols();
|
||||
|
||||
eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols.");
|
||||
|
||||
m_householder = matrix;
|
||||
|
||||
ColVectorType temp(rows);
|
||||
|
||||
upperbidiagonalization_inplace_unblocked(m_householder, m_bidiagonal, temp.data());
|
||||
|
||||
MatrixType A = matrix;
|
||||
BidiagonalType B(cols,cols);
|
||||
upperbidiagonalization_inplace_blocked(A, B, 8);
|
||||
|
||||
std::cout << (m_householder-A)/*.maxCoeff()*/ << "\n\n";
|
||||
std::cout << m_householder << "\n\n"
|
||||
<< m_bidiagonal.template diagonal<0>() << "\n"
|
||||
<< m_bidiagonal.template diagonal<1>() << "\n\n";
|
||||
std::cout << A << "\n\n"
|
||||
<< B.template diagonal<0>() << "\n"
|
||||
<< B.template diagonal<1>() << "\n\n";
|
||||
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename _MatrixType>
|
||||
UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix)
|
||||
{
|
||||
Index rows = matrix.rows();
|
||||
Index cols = matrix.cols();
|
||||
|
||||
eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols.");
|
||||
|
||||
m_householder = matrix;
|
||||
upperbidiagonalization_inplace_blocked(m_householder, m_bidiagonal);
|
||||
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user