mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-14 04:35:57 +08:00
implement JacobiSVD::solve() and expand the unit test
This commit is contained in:
parent
eb105cace8
commit
5c3d21693b
@ -31,16 +31,6 @@ template<typename MatrixType, int QRPreconditioner,
|
|||||||
bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
|
bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
|
||||||
struct ei_svd_precondition_2x2_block_to_be_real {};
|
struct ei_svd_precondition_2x2_block_to_be_real {};
|
||||||
|
|
||||||
template<typename MatrixType, int QRPreconditioner,
|
|
||||||
bool PossiblyMoreRowsThanCols = (MatrixType::RowsAtCompileTime == Dynamic)
|
|
||||||
|| (MatrixType::RowsAtCompileTime > MatrixType::ColsAtCompileTime) >
|
|
||||||
struct ei_svd_precondition_if_more_rows_than_cols;
|
|
||||||
|
|
||||||
template<typename MatrixType, int QRPreconditioner,
|
|
||||||
bool PossiblyMoreColsThanRows = (MatrixType::ColsAtCompileTime == Dynamic)
|
|
||||||
|| (MatrixType::ColsAtCompileTime > MatrixType::RowsAtCompileTime) >
|
|
||||||
struct ei_svd_precondition_if_more_cols_than_rows;
|
|
||||||
|
|
||||||
|
|
||||||
/*** QR preconditioners (R-SVD) ***/
|
/*** QR preconditioners (R-SVD) ***/
|
||||||
|
|
||||||
@ -81,8 +71,6 @@ struct ei_qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner,
|
|||||||
{
|
{
|
||||||
if(matrix.rows() > matrix.cols())
|
if(matrix.rows() > matrix.cols())
|
||||||
{
|
{
|
||||||
ei_assert(!svd.m_computeThinU && "JacobiSVD: can't compute a thin U with the FullPivHouseholderQR preconditioner. "
|
|
||||||
"Use the ColPivHouseholderQR preconditioner instead.");
|
|
||||||
FullPivHouseholderQR<MatrixType> qr(matrix);
|
FullPivHouseholderQR<MatrixType> qr(matrix);
|
||||||
svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
||||||
if(svd.m_computeFullU) svd.m_matrixU = qr.matrixQ();
|
if(svd.m_computeFullU) svd.m_matrixU = qr.matrixQ();
|
||||||
@ -100,8 +88,6 @@ struct ei_qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner,
|
|||||||
{
|
{
|
||||||
if(matrix.cols() > matrix.rows())
|
if(matrix.cols() > matrix.rows())
|
||||||
{
|
{
|
||||||
ei_assert(!svd.m_computeThinV && "JacobiSVD: can't compute a thin V with the FullPivHouseholderQR preconditioner. "
|
|
||||||
"Use the ColPivHouseholderQR preconditioner instead.");
|
|
||||||
typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime,
|
typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime,
|
||||||
MatrixType::Options, MatrixType::MaxColsAtCompileTime, MatrixType::MaxRowsAtCompileTime>
|
MatrixType::Options, MatrixType::MaxColsAtCompileTime, MatrixType::MaxRowsAtCompileTime>
|
||||||
TransposeTypeWithSameStorageOrder;
|
TransposeTypeWithSameStorageOrder;
|
||||||
@ -233,9 +219,11 @@ struct ei_qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, Precon
|
|||||||
*
|
*
|
||||||
* \sa MatrixBase::jacobiSvd()
|
* \sa MatrixBase::jacobiSvd()
|
||||||
*/
|
*/
|
||||||
template<typename MatrixType, int QRPreconditioner> class JacobiSVD
|
template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
||||||
{
|
{
|
||||||
private:
|
public:
|
||||||
|
|
||||||
|
typedef _MatrixType MatrixType;
|
||||||
typedef typename MatrixType::Scalar Scalar;
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||||
typedef typename MatrixType::Index Index;
|
typedef typename MatrixType::Index Index;
|
||||||
@ -262,8 +250,6 @@ template<typename MatrixType, int QRPreconditioner> class JacobiSVD
|
|||||||
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
|
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
|
||||||
WorkMatrixType;
|
WorkMatrixType;
|
||||||
|
|
||||||
public:
|
|
||||||
|
|
||||||
/** \brief Default Constructor.
|
/** \brief Default Constructor.
|
||||||
*
|
*
|
||||||
* The default constructor is useful in cases in which the user intends to
|
* The default constructor is useful in cases in which the user intends to
|
||||||
@ -352,6 +338,33 @@ template<typename MatrixType, int QRPreconditioner> class JacobiSVD
|
|||||||
inline bool computeU() const { return m_computeFullU || m_computeThinU; }
|
inline bool computeU() const { return m_computeFullU || m_computeThinU; }
|
||||||
inline bool computeV() const { return m_computeFullV || m_computeThinV; }
|
inline bool computeV() const { return m_computeFullV || m_computeThinV; }
|
||||||
|
|
||||||
|
/** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
|
||||||
|
*
|
||||||
|
* \param b the right-hand-side of the equation to solve.
|
||||||
|
*
|
||||||
|
* \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V,
|
||||||
|
*
|
||||||
|
* \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
|
||||||
|
* In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
|
||||||
|
*/
|
||||||
|
template<typename Rhs>
|
||||||
|
inline const ei_solve_retval<JacobiSVD, Rhs>
|
||||||
|
solve(const MatrixBase<Rhs>& b) const
|
||||||
|
{
|
||||||
|
ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||||
|
ei_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
|
||||||
|
return ei_solve_retval<JacobiSVD, Rhs>(*this, b.derived());
|
||||||
|
}
|
||||||
|
|
||||||
|
Index nonzeroSingularValues() const
|
||||||
|
{
|
||||||
|
ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||||
|
return m_nonzeroSingularValues;
|
||||||
|
}
|
||||||
|
|
||||||
|
inline Index rows() const { return m_rows; }
|
||||||
|
inline Index cols() const { return m_cols; }
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
MatrixUType m_matrixU;
|
MatrixUType m_matrixU;
|
||||||
MatrixVType m_matrixV;
|
MatrixVType m_matrixV;
|
||||||
@ -360,10 +373,11 @@ template<typename MatrixType, int QRPreconditioner> class JacobiSVD
|
|||||||
bool m_isInitialized;
|
bool m_isInitialized;
|
||||||
bool m_computeFullU, m_computeThinU;
|
bool m_computeFullU, m_computeThinU;
|
||||||
bool m_computeFullV, m_computeThinV;
|
bool m_computeFullV, m_computeThinV;
|
||||||
|
Index m_nonzeroSingularValues, m_rows, m_cols;
|
||||||
|
|
||||||
template<typename _MatrixType, int _QRPreconditioner, bool _IsComplex>
|
template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
|
||||||
friend struct ei_svd_precondition_2x2_block_to_be_real;
|
friend struct ei_svd_precondition_2x2_block_to_be_real;
|
||||||
template<typename _MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
|
template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
|
||||||
friend struct ei_qr_preconditioner_impl;
|
friend struct ei_qr_preconditioner_impl;
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -457,9 +471,15 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||||||
ei_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
|
ei_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
|
||||||
ei_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
|
ei_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
|
||||||
"JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
|
"JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
|
||||||
Index rows = matrix.rows();
|
if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
|
||||||
Index cols = matrix.cols();
|
{
|
||||||
Index diagSize = std::min(rows, cols);
|
ei_assert(!(m_computeThinU || m_computeThinV) &&
|
||||||
|
"JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
|
||||||
|
"Use the ColPivHouseholderQR preconditioner instead.");
|
||||||
|
}
|
||||||
|
m_rows = matrix.rows();
|
||||||
|
m_cols = matrix.cols();
|
||||||
|
Index diagSize = std::min(m_rows, m_cols);
|
||||||
m_singularValues.resize(diagSize);
|
m_singularValues.resize(diagSize);
|
||||||
const RealScalar precision = 2 * NumTraits<Scalar>::epsilon();
|
const RealScalar precision = 2 * NumTraits<Scalar>::epsilon();
|
||||||
|
|
||||||
@ -467,10 +487,10 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||||||
&& !ei_qr_preconditioner_impl<MatrixType, QRPreconditioner, PreconditionIfMoreRowsThanCols>::run(*this, matrix))
|
&& !ei_qr_preconditioner_impl<MatrixType, QRPreconditioner, PreconditionIfMoreRowsThanCols>::run(*this, matrix))
|
||||||
{
|
{
|
||||||
m_workMatrix = matrix.block(0,0,diagSize,diagSize);
|
m_workMatrix = matrix.block(0,0,diagSize,diagSize);
|
||||||
if(m_computeFullU) m_matrixU.setIdentity(rows,rows);
|
if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows);
|
||||||
if(m_computeThinU) m_matrixU.setIdentity(rows,diagSize);
|
if(m_computeThinU) m_matrixU.setIdentity(m_rows,diagSize);
|
||||||
if(m_computeFullV) m_matrixV.setIdentity(cols,cols);
|
if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
|
||||||
if(m_computeThinV) m_matrixV.setIdentity(diagSize,cols);
|
if(m_computeThinV) m_matrixV.setIdentity(diagSize,m_cols);
|
||||||
}
|
}
|
||||||
|
|
||||||
bool finished = false;
|
bool finished = false;
|
||||||
@ -507,10 +527,17 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||||||
if(computeU() && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
|
if(computeU() && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
m_nonzeroSingularValues = diagSize;
|
||||||
|
|
||||||
for(Index i = 0; i < diagSize; i++)
|
for(Index i = 0; i < diagSize; i++)
|
||||||
{
|
{
|
||||||
Index pos;
|
Index pos;
|
||||||
m_singularValues.tail(diagSize-i).maxCoeff(&pos);
|
RealScalar maxRemainingSingularValue = m_singularValues.tail(diagSize-i).maxCoeff(&pos);
|
||||||
|
if(maxRemainingSingularValue == RealScalar(0))
|
||||||
|
{
|
||||||
|
m_nonzeroSingularValues = i;
|
||||||
|
break;
|
||||||
|
}
|
||||||
if(pos)
|
if(pos)
|
||||||
{
|
{
|
||||||
pos += i;
|
pos += i;
|
||||||
@ -523,4 +550,33 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||||||
m_isInitialized = true;
|
m_isInitialized = true;
|
||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<typename _MatrixType, int QRPreconditioner, typename Rhs>
|
||||||
|
struct ei_solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
||||||
|
: ei_solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
||||||
|
{
|
||||||
|
typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
|
||||||
|
EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)
|
||||||
|
|
||||||
|
template<typename Dest> void evalTo(Dest& dst) const
|
||||||
|
{
|
||||||
|
ei_assert(rhs().rows() == dec().rows());
|
||||||
|
|
||||||
|
// A = U S V^*
|
||||||
|
// So A^{-1} = V S^{-1} U^*
|
||||||
|
|
||||||
|
Index diagSize = std::min(dec().rows(), dec().cols());
|
||||||
|
typename JacobiSVDType::SingularValuesType invertedSingVals(diagSize);
|
||||||
|
|
||||||
|
Index nonzeroSingVals = dec().nonzeroSingularValues();
|
||||||
|
invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
|
||||||
|
invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
|
||||||
|
|
||||||
|
dst = dec().matrixV().leftCols(diagSize)
|
||||||
|
* invertedSingVals.asDiagonal()
|
||||||
|
* dec().matrixU().leftCols(diagSize).adjoint()
|
||||||
|
* rhs();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
#endif // EIGEN_JACOBISVD_H
|
#endif // EIGEN_JACOBISVD_H
|
||||||
|
@ -79,6 +79,29 @@ void jacobisvd_compare_to_full(const MatrixType& m,
|
|||||||
VERIFY_IS_EQUAL(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
|
VERIFY_IS_EQUAL(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<typename MatrixType, int QRPreconditioner>
|
||||||
|
void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions)
|
||||||
|
{
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef typename MatrixType::Index Index;
|
||||||
|
Index rows = m.rows();
|
||||||
|
Index cols = m.cols();
|
||||||
|
|
||||||
|
enum {
|
||||||
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||||
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
|
||||||
|
typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
|
||||||
|
|
||||||
|
RhsType rhs = RhsType::Random(rows, ei_random<Index>(1, cols));
|
||||||
|
JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
|
||||||
|
SolutionType x = svd.solve(rhs);
|
||||||
|
// evaluate normal equation which works also for least-squares solutions
|
||||||
|
VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
|
||||||
|
}
|
||||||
|
|
||||||
template<typename MatrixType, int QRPreconditioner>
|
template<typename MatrixType, int QRPreconditioner>
|
||||||
void jacobisvd_test_all_computation_options(const MatrixType& m)
|
void jacobisvd_test_all_computation_options(const MatrixType& m)
|
||||||
{
|
{
|
||||||
@ -87,6 +110,7 @@ void jacobisvd_test_all_computation_options(const MatrixType& m)
|
|||||||
JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV);
|
JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV);
|
||||||
|
|
||||||
jacobisvd_check_full(m, fullSvd);
|
jacobisvd_check_full(m, fullSvd);
|
||||||
|
jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV);
|
||||||
|
|
||||||
if(QRPreconditioner == FullPivHouseholderQRPreconditioner)
|
if(QRPreconditioner == FullPivHouseholderQRPreconditioner)
|
||||||
return;
|
return;
|
||||||
@ -102,6 +126,9 @@ void jacobisvd_test_all_computation_options(const MatrixType& m)
|
|||||||
jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd);
|
jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd);
|
||||||
jacobisvd_compare_to_full(m, ComputeThinU , fullSvd);
|
jacobisvd_compare_to_full(m, ComputeThinU , fullSvd);
|
||||||
jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd);
|
jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd);
|
||||||
|
jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV);
|
||||||
|
jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV);
|
||||||
|
jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -109,29 +136,74 @@ template<typename MatrixType>
|
|||||||
void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
|
void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
|
||||||
{
|
{
|
||||||
MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
|
MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
|
||||||
|
|
||||||
jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m);
|
jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m);
|
||||||
jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m);
|
jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m);
|
||||||
jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m);
|
jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m);
|
||||||
jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m);
|
jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename MatrixType> void jacobisvd_verify_assert()
|
template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m)
|
||||||
{
|
{
|
||||||
MatrixType tmp;
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef typename MatrixType::Index Index;
|
||||||
|
Index rows = m.rows();
|
||||||
|
Index cols = m.cols();
|
||||||
|
|
||||||
JacobiSVD<MatrixType> svd;
|
enum {
|
||||||
//VERIFY_RAISES_ASSERT(svd.solve(tmp, &tmp))
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||||
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
|
||||||
|
|
||||||
|
RhsType rhs(rows);
|
||||||
|
|
||||||
|
JacobiSVD<MatrixType, HouseholderQRPreconditioner> svd;
|
||||||
VERIFY_RAISES_ASSERT(svd.matrixU())
|
VERIFY_RAISES_ASSERT(svd.matrixU())
|
||||||
VERIFY_RAISES_ASSERT(svd.singularValues())
|
VERIFY_RAISES_ASSERT(svd.singularValues())
|
||||||
VERIFY_RAISES_ASSERT(svd.matrixV())
|
VERIFY_RAISES_ASSERT(svd.matrixV())
|
||||||
/*VERIFY_RAISES_ASSERT(svd.computeUnitaryPositive(&tmp,&tmp))
|
VERIFY_RAISES_ASSERT(svd.solve(rhs))
|
||||||
VERIFY_RAISES_ASSERT(svd.computePositiveUnitary(&tmp,&tmp))
|
|
||||||
VERIFY_RAISES_ASSERT(svd.computeRotationScaling(&tmp,&tmp))
|
MatrixType a = MatrixType::Zero(rows, cols);
|
||||||
VERIFY_RAISES_ASSERT(svd.computeScalingRotation(&tmp,&tmp))*/
|
a.setZero();
|
||||||
|
svd.compute(a, 0);
|
||||||
|
VERIFY_RAISES_ASSERT(svd.matrixU())
|
||||||
|
VERIFY_RAISES_ASSERT(svd.matrixV())
|
||||||
|
svd.singularValues();
|
||||||
|
VERIFY_RAISES_ASSERT(svd.solve(rhs))
|
||||||
|
|
||||||
|
if (ColsAtCompileTime == Dynamic)
|
||||||
|
{
|
||||||
|
svd.compute(a, ComputeThinU);
|
||||||
|
svd.matrixU();
|
||||||
|
VERIFY_RAISES_ASSERT(svd.matrixV())
|
||||||
|
VERIFY_RAISES_ASSERT(svd.solve(rhs))
|
||||||
|
|
||||||
|
svd.compute(a, ComputeThinV);
|
||||||
|
svd.matrixV();
|
||||||
|
VERIFY_RAISES_ASSERT(svd.matrixU())
|
||||||
|
VERIFY_RAISES_ASSERT(svd.solve(rhs))
|
||||||
|
|
||||||
|
JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr;
|
||||||
|
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV))
|
||||||
|
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV))
|
||||||
|
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV))
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
|
||||||
|
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void test_jacobisvd()
|
void test_jacobisvd()
|
||||||
{
|
{
|
||||||
|
CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) ));
|
||||||
|
CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) ));
|
||||||
|
CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) ));
|
||||||
|
CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) ));
|
||||||
|
|
||||||
for(int i = 0; i < g_repeat; i++) {
|
for(int i = 0; i < g_repeat; i++) {
|
||||||
Matrix2cd m;
|
Matrix2cd m;
|
||||||
m << 0, 1,
|
m << 0, 1,
|
||||||
@ -149,17 +221,14 @@ void test_jacobisvd()
|
|||||||
CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() ));
|
CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() ));
|
||||||
CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));
|
CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));
|
||||||
|
|
||||||
CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(50,50)) ));
|
int r = ei_random<int>(1, 30),
|
||||||
CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(14,7)) ));
|
c = ei_random<int>(1, 30);
|
||||||
|
CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) ));
|
||||||
|
CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) ));
|
||||||
|
(void) r;
|
||||||
|
(void) c;
|
||||||
}
|
}
|
||||||
CALL_SUBTEST_9(( jacobisvd<MatrixXf>(MatrixXf(300,200)) ));
|
|
||||||
CALL_SUBTEST_10(( jacobisvd<MatrixXcd>(MatrixXcd(100,150)) ));
|
|
||||||
|
|
||||||
CALL_SUBTEST_3(( jacobisvd_verify_assert<Matrix3f>() ));
|
CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(ei_random<int>(200, 300), ei_random<int>(200, 300))) ));
|
||||||
CALL_SUBTEST_3(( jacobisvd_verify_assert<Matrix3d>() ));
|
CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(ei_random<int>(100, 120), ei_random<int>(100, 120))) ));
|
||||||
CALL_SUBTEST_9(( jacobisvd_verify_assert<MatrixXf>() ));
|
|
||||||
CALL_SUBTEST_11(( jacobisvd_verify_assert<MatrixXd>() ));
|
|
||||||
|
|
||||||
// Test problem size constructors
|
|
||||||
CALL_SUBTEST_12( JacobiSVD<MatrixXf>(10, 20) );
|
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user