mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-25 15:53:19 +08:00
QR and SVD decomposition interface unification.
Added default ctor and public compute method as well as safe-guards against uninitialized usage. Added unit tests for the safe-guards.
This commit is contained in:
parent
c7baddb132
commit
5c5789cf0f
@ -49,11 +49,20 @@ template<typename MatrixType> class QR
|
|||||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
|
||||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Default Constructor.
|
||||||
|
*
|
||||||
|
* The default constructor is useful in cases in which the user intends to
|
||||||
|
* perform decompositions via QR::compute(const MatrixType&).
|
||||||
|
*/
|
||||||
|
QR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {}
|
||||||
|
|
||||||
QR(const MatrixType& matrix)
|
QR(const MatrixType& matrix)
|
||||||
: m_qr(matrix.rows(), matrix.cols()),
|
: m_qr(matrix.rows(), matrix.cols()),
|
||||||
m_hCoeffs(matrix.cols())
|
m_hCoeffs(matrix.cols()),
|
||||||
|
m_isInitialized(false)
|
||||||
{
|
{
|
||||||
_compute(matrix);
|
compute(matrix);
|
||||||
}
|
}
|
||||||
|
|
||||||
/** \deprecated use isInjective()
|
/** \deprecated use isInjective()
|
||||||
@ -62,7 +71,11 @@ template<typename MatrixType> class QR
|
|||||||
* \note Since the rank is computed only once, i.e. the first time it is needed, this
|
* \note Since the rank is computed only once, i.e. the first time it is needed, this
|
||||||
* method almost does not perform any further computation.
|
* method almost does not perform any further computation.
|
||||||
*/
|
*/
|
||||||
EIGEN_DEPRECATED bool isFullRank() const { return rank() == m_qr.cols(); }
|
EIGEN_DEPRECATED bool isFullRank() const
|
||||||
|
{
|
||||||
|
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||||
|
return rank() == m_qr.cols();
|
||||||
|
}
|
||||||
|
|
||||||
/** \returns the rank of the matrix of which *this is the QR decomposition.
|
/** \returns the rank of the matrix of which *this is the QR decomposition.
|
||||||
*
|
*
|
||||||
@ -78,6 +91,7 @@ template<typename MatrixType> class QR
|
|||||||
*/
|
*/
|
||||||
inline int dimensionOfKernel() const
|
inline int dimensionOfKernel() const
|
||||||
{
|
{
|
||||||
|
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||||
return m_qr.cols() - rank();
|
return m_qr.cols() - rank();
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -89,6 +103,7 @@ template<typename MatrixType> class QR
|
|||||||
*/
|
*/
|
||||||
inline bool isInjective() const
|
inline bool isInjective() const
|
||||||
{
|
{
|
||||||
|
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||||
return rank() == m_qr.cols();
|
return rank() == m_qr.cols();
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -100,6 +115,7 @@ template<typename MatrixType> class QR
|
|||||||
*/
|
*/
|
||||||
inline bool isSurjective() const
|
inline bool isSurjective() const
|
||||||
{
|
{
|
||||||
|
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||||
return rank() == m_qr.rows();
|
return rank() == m_qr.rows();
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -110,6 +126,7 @@ template<typename MatrixType> class QR
|
|||||||
*/
|
*/
|
||||||
inline bool isInvertible() const
|
inline bool isInvertible() const
|
||||||
{
|
{
|
||||||
|
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||||
return isInjective() && isSurjective();
|
return isInjective() && isSurjective();
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -117,6 +134,7 @@ template<typename MatrixType> class QR
|
|||||||
const Part<NestByValue<MatrixRBlockType>, UpperTriangular>
|
const Part<NestByValue<MatrixRBlockType>, UpperTriangular>
|
||||||
matrixR(void) const
|
matrixR(void) const
|
||||||
{
|
{
|
||||||
|
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||||
int cols = m_qr.cols();
|
int cols = m_qr.cols();
|
||||||
return MatrixRBlockType(m_qr, 0, 0, cols, cols).nestByValue().template part<UpperTriangular>();
|
return MatrixRBlockType(m_qr, 0, 0, cols, cols).nestByValue().template part<UpperTriangular>();
|
||||||
}
|
}
|
||||||
@ -149,21 +167,21 @@ template<typename MatrixType> class QR
|
|||||||
|
|
||||||
MatrixType matrixQ(void) const;
|
MatrixType matrixQ(void) const;
|
||||||
|
|
||||||
private:
|
void compute(const MatrixType& matrix);
|
||||||
|
|
||||||
void _compute(const MatrixType& matrix);
|
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
MatrixType m_qr;
|
MatrixType m_qr;
|
||||||
VectorType m_hCoeffs;
|
VectorType m_hCoeffs;
|
||||||
mutable int m_rank;
|
mutable int m_rank;
|
||||||
mutable bool m_rankIsUptodate;
|
mutable bool m_rankIsUptodate;
|
||||||
|
bool m_isInitialized;
|
||||||
};
|
};
|
||||||
|
|
||||||
/** \returns the rank of the matrix of which *this is the QR decomposition. */
|
/** \returns the rank of the matrix of which *this is the QR decomposition. */
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
int QR<MatrixType>::rank() const
|
int QR<MatrixType>::rank() const
|
||||||
{
|
{
|
||||||
|
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||||
if (!m_rankIsUptodate)
|
if (!m_rankIsUptodate)
|
||||||
{
|
{
|
||||||
RealScalar maxCoeff = m_qr.diagonal().cwise().abs().maxCoeff();
|
RealScalar maxCoeff = m_qr.diagonal().cwise().abs().maxCoeff();
|
||||||
@ -179,10 +197,12 @@ int QR<MatrixType>::rank() const
|
|||||||
#ifndef EIGEN_HIDE_HEAVY_CODE
|
#ifndef EIGEN_HIDE_HEAVY_CODE
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
void QR<MatrixType>::_compute(const MatrixType& matrix)
|
void QR<MatrixType>::compute(const MatrixType& matrix)
|
||||||
{
|
{
|
||||||
m_rankIsUptodate = false;
|
m_rankIsUptodate = false;
|
||||||
m_qr = matrix;
|
m_qr = matrix;
|
||||||
|
m_hCoeffs.resize(matrix.cols());
|
||||||
|
|
||||||
int rows = matrix.rows();
|
int rows = matrix.rows();
|
||||||
int cols = matrix.cols();
|
int cols = matrix.cols();
|
||||||
RealScalar eps2 = precision<RealScalar>()*precision<RealScalar>();
|
RealScalar eps2 = precision<RealScalar>()*precision<RealScalar>();
|
||||||
@ -237,6 +257,7 @@ void QR<MatrixType>::_compute(const MatrixType& matrix)
|
|||||||
m_hCoeffs.coeffRef(k) = 0;
|
m_hCoeffs.coeffRef(k) = 0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
m_isInitialized = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
@ -246,6 +267,7 @@ bool QR<MatrixType>::solve(
|
|||||||
ResultType *result
|
ResultType *result
|
||||||
) const
|
) const
|
||||||
{
|
{
|
||||||
|
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||||
const int rows = m_qr.rows();
|
const int rows = m_qr.rows();
|
||||||
ei_assert(b.rows() == rows);
|
ei_assert(b.rows() == rows);
|
||||||
result->resize(rows, b.cols());
|
result->resize(rows, b.cols());
|
||||||
@ -274,6 +296,7 @@ bool QR<MatrixType>::solve(
|
|||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
MatrixType QR<MatrixType>::matrixQ() const
|
MatrixType QR<MatrixType>::matrixQ() const
|
||||||
{
|
{
|
||||||
|
ei_assert(m_isInitialized && "QR is not initialized.");
|
||||||
// compute the product Q_0 Q_1 ... Q_n-1,
|
// compute the product Q_0 Q_1 ... Q_n-1,
|
||||||
// where Q_k is the k-th Householder transformation I - h_k v_k v_k'
|
// where Q_k is the k-th Householder transformation I - h_k v_k v_k'
|
||||||
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
|
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
|
||||||
|
@ -61,10 +61,19 @@ template<typename MatrixType> class SVD
|
|||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Default Constructor.
|
||||||
|
*
|
||||||
|
* The default constructor is useful in cases in which the user intends to
|
||||||
|
* perform decompositions via QR::compute(const MatrixType&).
|
||||||
|
*/
|
||||||
|
SVD() : m_matU(), m_matV(), m_sigma(), m_isInitialized(false) {}
|
||||||
|
|
||||||
SVD(const MatrixType& matrix)
|
SVD(const MatrixType& matrix)
|
||||||
: m_matU(matrix.rows(), std::min(matrix.rows(), matrix.cols())),
|
: m_matU(matrix.rows(), std::min(matrix.rows(), matrix.cols())),
|
||||||
m_matV(matrix.cols(),matrix.cols()),
|
m_matV(matrix.cols(),matrix.cols()),
|
||||||
m_sigma(std::min(matrix.rows(),matrix.cols()))
|
m_sigma(std::min(matrix.rows(),matrix.cols())),
|
||||||
|
m_isInitialized(false)
|
||||||
{
|
{
|
||||||
compute(matrix);
|
compute(matrix);
|
||||||
}
|
}
|
||||||
@ -72,9 +81,23 @@ template<typename MatrixType> class SVD
|
|||||||
template<typename OtherDerived, typename ResultType>
|
template<typename OtherDerived, typename ResultType>
|
||||||
bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
|
bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
|
||||||
|
|
||||||
const MatrixUType& matrixU() const { return m_matU; }
|
const MatrixUType& matrixU() const
|
||||||
const SingularValuesType& singularValues() const { return m_sigma; }
|
{
|
||||||
const MatrixVType& matrixV() const { return m_matV; }
|
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||||
|
return m_matU;
|
||||||
|
}
|
||||||
|
|
||||||
|
const SingularValuesType& singularValues() const
|
||||||
|
{
|
||||||
|
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||||
|
return m_sigma;
|
||||||
|
}
|
||||||
|
|
||||||
|
const MatrixVType& matrixV() const
|
||||||
|
{
|
||||||
|
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||||
|
return m_matV;
|
||||||
|
}
|
||||||
|
|
||||||
void compute(const MatrixType& matrix);
|
void compute(const MatrixType& matrix);
|
||||||
SVD& sort();
|
SVD& sort();
|
||||||
@ -95,6 +118,7 @@ template<typename MatrixType> class SVD
|
|||||||
MatrixVType m_matV;
|
MatrixVType m_matV;
|
||||||
/** \internal */
|
/** \internal */
|
||||||
SingularValuesType m_sigma;
|
SingularValuesType m_sigma;
|
||||||
|
bool m_isInitialized;
|
||||||
};
|
};
|
||||||
|
|
||||||
/** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix
|
/** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix
|
||||||
@ -473,11 +497,15 @@ void SVD<MatrixType>::compute(const MatrixType& matrix)
|
|||||||
break;
|
break;
|
||||||
} // end big switch
|
} // end big switch
|
||||||
} // end iterations
|
} // end iterations
|
||||||
|
|
||||||
|
m_isInitialized = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
SVD<MatrixType>& SVD<MatrixType>::sort()
|
SVD<MatrixType>& SVD<MatrixType>::sort()
|
||||||
{
|
{
|
||||||
|
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||||
|
|
||||||
int mu = m_matU.rows();
|
int mu = m_matU.rows();
|
||||||
int mv = m_matV.rows();
|
int mv = m_matV.rows();
|
||||||
int n = m_matU.cols();
|
int n = m_matU.cols();
|
||||||
@ -521,6 +549,8 @@ template<typename MatrixType>
|
|||||||
template<typename OtherDerived, typename ResultType>
|
template<typename OtherDerived, typename ResultType>
|
||||||
bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
|
bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
|
||||||
{
|
{
|
||||||
|
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||||
|
|
||||||
const int rows = m_matU.rows();
|
const int rows = m_matU.rows();
|
||||||
ei_assert(b.rows() == rows);
|
ei_assert(b.rows() == rows);
|
||||||
|
|
||||||
@ -556,6 +586,7 @@ template<typename UnitaryType, typename PositiveType>
|
|||||||
void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary,
|
void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary,
|
||||||
PositiveType *positive) const
|
PositiveType *positive) const
|
||||||
{
|
{
|
||||||
|
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||||
ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices");
|
ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices");
|
||||||
if(unitary) *unitary = m_matU * m_matV.adjoint();
|
if(unitary) *unitary = m_matU * m_matV.adjoint();
|
||||||
if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint();
|
if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint();
|
||||||
@ -574,6 +605,7 @@ template<typename UnitaryType, typename PositiveType>
|
|||||||
void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive,
|
void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive,
|
||||||
PositiveType *unitary) const
|
PositiveType *unitary) const
|
||||||
{
|
{
|
||||||
|
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||||
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
|
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
|
||||||
if(unitary) *unitary = m_matU * m_matV.adjoint();
|
if(unitary) *unitary = m_matU * m_matV.adjoint();
|
||||||
if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
|
if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
|
||||||
@ -592,6 +624,7 @@ template<typename MatrixType>
|
|||||||
template<typename RotationType, typename ScalingType>
|
template<typename RotationType, typename ScalingType>
|
||||||
void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const
|
void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const
|
||||||
{
|
{
|
||||||
|
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||||
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
|
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
|
||||||
Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
|
Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
|
||||||
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
|
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
|
||||||
@ -618,6 +651,7 @@ template<typename MatrixType>
|
|||||||
template<typename ScalingType, typename RotationType>
|
template<typename ScalingType, typename RotationType>
|
||||||
void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const
|
void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const
|
||||||
{
|
{
|
||||||
|
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||||
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
|
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
|
||||||
Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
|
Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
|
||||||
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
|
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
|
||||||
|
23
test/qr.cpp
23
test/qr.cpp
@ -121,6 +121,22 @@ template<typename MatrixType> void qr_invertible()
|
|||||||
VERIFY(lu.solve(m3, &m2));
|
VERIFY(lu.solve(m3, &m2));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<typename MatrixType> void qr_verify_assert()
|
||||||
|
{
|
||||||
|
MatrixType tmp;
|
||||||
|
|
||||||
|
QR<MatrixType> qr;
|
||||||
|
VERIFY_RAISES_ASSERT(qr.isFullRank())
|
||||||
|
VERIFY_RAISES_ASSERT(qr.rank())
|
||||||
|
VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
|
||||||
|
VERIFY_RAISES_ASSERT(qr.isInjective())
|
||||||
|
VERIFY_RAISES_ASSERT(qr.isSurjective())
|
||||||
|
VERIFY_RAISES_ASSERT(qr.isInvertible())
|
||||||
|
VERIFY_RAISES_ASSERT(qr.matrixR())
|
||||||
|
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
|
||||||
|
VERIFY_RAISES_ASSERT(qr.matrixQ())
|
||||||
|
}
|
||||||
|
|
||||||
void test_qr()
|
void test_qr()
|
||||||
{
|
{
|
||||||
for(int i = 0; i < 1; i++) {
|
for(int i = 0; i < 1; i++) {
|
||||||
@ -144,4 +160,11 @@ void test_qr()
|
|||||||
// CALL_SUBTEST( qr_invertible<MatrixXcf>() );
|
// CALL_SUBTEST( qr_invertible<MatrixXcf>() );
|
||||||
// CALL_SUBTEST( qr_invertible<MatrixXcd>() );
|
// CALL_SUBTEST( qr_invertible<MatrixXcd>() );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
CALL_SUBTEST(qr_verify_assert<Matrix3f>());
|
||||||
|
CALL_SUBTEST(qr_verify_assert<Matrix3d>());
|
||||||
|
CALL_SUBTEST(qr_verify_assert<MatrixXf>());
|
||||||
|
CALL_SUBTEST(qr_verify_assert<MatrixXd>());
|
||||||
|
CALL_SUBTEST(qr_verify_assert<MatrixXcf>());
|
||||||
|
CALL_SUBTEST(qr_verify_assert<MatrixXcd>());
|
||||||
}
|
}
|
||||||
|
22
test/svd.cpp
22
test/svd.cpp
@ -24,6 +24,7 @@
|
|||||||
|
|
||||||
#include "main.h"
|
#include "main.h"
|
||||||
#include <Eigen/SVD>
|
#include <Eigen/SVD>
|
||||||
|
#include <Eigen/LU>
|
||||||
|
|
||||||
template<typename MatrixType> void svd(const MatrixType& m)
|
template<typename MatrixType> void svd(const MatrixType& m)
|
||||||
{
|
{
|
||||||
@ -85,6 +86,22 @@ template<typename MatrixType> void svd(const MatrixType& m)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<typename MatrixType> void svd_verify_assert()
|
||||||
|
{
|
||||||
|
MatrixType tmp;
|
||||||
|
|
||||||
|
SVD<MatrixType> svd;
|
||||||
|
VERIFY_RAISES_ASSERT(svd.solve(tmp, &tmp))
|
||||||
|
VERIFY_RAISES_ASSERT(svd.matrixU())
|
||||||
|
VERIFY_RAISES_ASSERT(svd.singularValues())
|
||||||
|
VERIFY_RAISES_ASSERT(svd.matrixV())
|
||||||
|
VERIFY_RAISES_ASSERT(svd.sort())
|
||||||
|
VERIFY_RAISES_ASSERT(svd.computeUnitaryPositive(&tmp,&tmp))
|
||||||
|
VERIFY_RAISES_ASSERT(svd.computePositiveUnitary(&tmp,&tmp))
|
||||||
|
VERIFY_RAISES_ASSERT(svd.computeRotationScaling(&tmp,&tmp))
|
||||||
|
VERIFY_RAISES_ASSERT(svd.computeScalingRotation(&tmp,&tmp))
|
||||||
|
}
|
||||||
|
|
||||||
void test_svd()
|
void test_svd()
|
||||||
{
|
{
|
||||||
for(int i = 0; i < g_repeat; i++) {
|
for(int i = 0; i < g_repeat; i++) {
|
||||||
@ -96,4 +113,9 @@ void test_svd()
|
|||||||
// CALL_SUBTEST( svd(MatrixXcd(6,6)) );
|
// CALL_SUBTEST( svd(MatrixXcd(6,6)) );
|
||||||
// CALL_SUBTEST( svd(MatrixXcf(3,3)) );
|
// CALL_SUBTEST( svd(MatrixXcf(3,3)) );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
CALL_SUBTEST( svd_verify_assert<Matrix3f>() );
|
||||||
|
CALL_SUBTEST( svd_verify_assert<Matrix3d>() );
|
||||||
|
CALL_SUBTEST( svd_verify_assert<MatrixXf>() );
|
||||||
|
CALL_SUBTEST( svd_verify_assert<MatrixXd>() );
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user