mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-18 23:57:39 +08:00
Test power of singular matrices.
This commit is contained in:
parent
639d03d900
commit
5c95892b83
@ -9,6 +9,36 @@
|
|||||||
|
|
||||||
#include "matrix_functions.h"
|
#include "matrix_functions.h"
|
||||||
|
|
||||||
|
// for complex matrices, any matrix is fine
|
||||||
|
template<typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
|
||||||
|
struct generateSingularMatrix
|
||||||
|
{
|
||||||
|
static void run(MatrixType& result, typename MatrixType::Index size)
|
||||||
|
{
|
||||||
|
result = MatrixType::Random(size, size);
|
||||||
|
result.col(0).fill(0);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
// for real matrices, make sure none of the eigenvalues are negative
|
||||||
|
template<typename MatrixType>
|
||||||
|
struct generateSingularMatrix<MatrixType,0>
|
||||||
|
{
|
||||||
|
static void run(MatrixType& result, typename MatrixType::Index size)
|
||||||
|
{
|
||||||
|
MatrixType mat = MatrixType::Random(size, size);
|
||||||
|
mat.col(0).fill(0);
|
||||||
|
ComplexSchur<MatrixType> schur(mat);
|
||||||
|
typename ComplexSchur<MatrixType>::ComplexMatrixType T = schur.matrixT();
|
||||||
|
|
||||||
|
for (typename MatrixType::Index i = 0; i < size; ++i) {
|
||||||
|
if (T.coeff(i,i).imag() == 0 && T.coeff(i,i).real() < 0)
|
||||||
|
T.coeffRef(i,i) = -T.coeff(i,i);
|
||||||
|
}
|
||||||
|
result = (schur.matrixU() * (T.template triangularView<Upper>() * schur.matrixU().adjoint())).real();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
template<typename T>
|
template<typename T>
|
||||||
void test2dRotation(double tol)
|
void test2dRotation(double tol)
|
||||||
{
|
{
|
||||||
@ -53,7 +83,7 @@ void test2dHyperbolicRotation(double tol)
|
|||||||
}
|
}
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
void testExponentLaws(const MatrixType& m, double tol)
|
void testGeneral(const MatrixType& m, double tol)
|
||||||
{
|
{
|
||||||
typedef typename MatrixType::RealScalar RealScalar;
|
typedef typename MatrixType::RealScalar RealScalar;
|
||||||
MatrixType m1, m2, m3, m4, m5;
|
MatrixType m1, m2, m3, m4, m5;
|
||||||
@ -82,6 +112,36 @@ void testExponentLaws(const MatrixType& m, double tol)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
void testSingular(MatrixType m, double tol)
|
||||||
|
{
|
||||||
|
typedef typename MatrixType::RealScalar RealScalar;
|
||||||
|
MatrixType m1, m2, m3, m4, m5;
|
||||||
|
RealScalar x, y;
|
||||||
|
|
||||||
|
for (int i=0; i < g_repeat; ++i) {
|
||||||
|
generateTestMatrix<MatrixType>::run(m1, m.rows());
|
||||||
|
MatrixPower<MatrixType> mpow(m1);
|
||||||
|
|
||||||
|
x = internal::random<RealScalar>(0, 1);
|
||||||
|
y = internal::random<RealScalar>(0, 1);
|
||||||
|
m2 = mpow(x);
|
||||||
|
m3 = mpow(y);
|
||||||
|
|
||||||
|
m4 = mpow(x+y);
|
||||||
|
m5.noalias() = m2 * m3;
|
||||||
|
VERIFY(m4.isApprox(m5, tol));
|
||||||
|
|
||||||
|
m4 = mpow(x*y);
|
||||||
|
m5 = m2.pow(y);
|
||||||
|
VERIFY(m4.isApprox(m5, tol));
|
||||||
|
|
||||||
|
m4 = (x * m1).pow(y);
|
||||||
|
m5 = std::pow(x, y) * m3;
|
||||||
|
VERIFY(m4.isApprox(m5, tol));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
typedef Matrix<double,3,3,RowMajor> Matrix3dRowMajor;
|
typedef Matrix<double,3,3,RowMajor> Matrix3dRowMajor;
|
||||||
typedef Matrix<long double,Dynamic,Dynamic> MatrixXe;
|
typedef Matrix<long double,Dynamic,Dynamic> MatrixXe;
|
||||||
|
|
||||||
@ -94,13 +154,23 @@ void test_matrix_power()
|
|||||||
CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5));
|
CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5));
|
||||||
CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14));
|
CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14));
|
||||||
|
|
||||||
CALL_SUBTEST_2(testExponentLaws(Matrix2d(), 1e-13));
|
CALL_SUBTEST_2(testGeneral(Matrix2d(), 1e-13));
|
||||||
CALL_SUBTEST_7(testExponentLaws(Matrix3dRowMajor(), 1e-13));
|
CALL_SUBTEST_7(testGeneral(Matrix3dRowMajor(), 1e-13));
|
||||||
CALL_SUBTEST_3(testExponentLaws(Matrix4cd(), 1e-13));
|
CALL_SUBTEST_3(testGeneral(Matrix4cd(), 1e-13));
|
||||||
CALL_SUBTEST_4(testExponentLaws(MatrixXd(8,8), 2e-12));
|
CALL_SUBTEST_4(testGeneral(MatrixXd(8,8), 2e-12));
|
||||||
CALL_SUBTEST_1(testExponentLaws(Matrix2f(), 1e-4));
|
CALL_SUBTEST_1(testGeneral(Matrix2f(), 1e-4));
|
||||||
CALL_SUBTEST_5(testExponentLaws(Matrix3cf(), 1e-4));
|
CALL_SUBTEST_5(testGeneral(Matrix3cf(), 1e-4));
|
||||||
CALL_SUBTEST_8(testExponentLaws(Matrix4f(), 1e-4));
|
CALL_SUBTEST_8(testGeneral(Matrix4f(), 1e-4));
|
||||||
CALL_SUBTEST_6(testExponentLaws(MatrixXf(2,2), 1e-3)); // see bug 614
|
CALL_SUBTEST_6(testGeneral(MatrixXf(2,2), 1e-3)); // see bug 614
|
||||||
CALL_SUBTEST_9(testExponentLaws(MatrixXe(7,7), 1e-13));
|
CALL_SUBTEST_9(testGeneral(MatrixXe(7,7), 1e-13));
|
||||||
|
|
||||||
|
CALL_SUBTEST_2(testSingular(Matrix2d(), 1e-13));
|
||||||
|
CALL_SUBTEST_7(testSingular(Matrix3dRowMajor(), 1e-13));
|
||||||
|
CALL_SUBTEST_3(testSingular(Matrix4cd(), 1e-13));
|
||||||
|
CALL_SUBTEST_4(testSingular(MatrixXd(8,8), 2e-12));
|
||||||
|
CALL_SUBTEST_1(testSingular(Matrix2f(), 1e-4));
|
||||||
|
CALL_SUBTEST_5(testSingular(Matrix3cf(), 1e-4));
|
||||||
|
CALL_SUBTEST_8(testSingular(Matrix4f(), 1e-4));
|
||||||
|
CALL_SUBTEST_6(testSingular(MatrixXf(2,2), 1e-3));
|
||||||
|
CALL_SUBTEST_9(testSingular(MatrixXe(7,7), 1e-13));
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user