mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-12 17:33:15 +08:00
Update matlab-eigen quick ascii reff
This commit is contained in:
parent
6c68f1d787
commit
5d1a74da0a
@ -1,8 +1,7 @@
|
|||||||
// A simple quickref for Eigen. Add anything that's missing.
|
// A simple quickref for Eigen. Add anything that's missing.
|
||||||
// Main author: Keir Mierle
|
// Main author: Keir Mierle
|
||||||
|
|
||||||
#include <Eigen/Core>
|
#include <Eigen/Dense>
|
||||||
#include <Eigen/Array>
|
|
||||||
|
|
||||||
Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d.
|
Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d.
|
||||||
Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols.
|
Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols.
|
||||||
@ -11,6 +10,7 @@ Matrix<double, 3, 3, RowMajor> E; // Row major; default is column-major.
|
|||||||
Matrix3f P, Q, R; // 3x3 float matrix.
|
Matrix3f P, Q, R; // 3x3 float matrix.
|
||||||
Vector3f x, y, z; // 3x1 float matrix.
|
Vector3f x, y, z; // 3x1 float matrix.
|
||||||
RowVector3f a, b, c; // 1x3 float matrix.
|
RowVector3f a, b, c; // 1x3 float matrix.
|
||||||
|
VectorXd v; // Dynamic column vector of doubles
|
||||||
double s;
|
double s;
|
||||||
|
|
||||||
// Basic usage
|
// Basic usage
|
||||||
@ -31,9 +31,19 @@ A << 1, 2, 3, // Initialize A. The elements can also be
|
|||||||
7, 8, 9; // and then the rows are stacked.
|
7, 8, 9; // and then the rows are stacked.
|
||||||
B << A, A, A; // B is three horizontally stacked A's.
|
B << A, A, A; // B is three horizontally stacked A's.
|
||||||
A.fill(10); // Fill A with all 10's.
|
A.fill(10); // Fill A with all 10's.
|
||||||
A.setRandom(); // Fill A with uniform random numbers in (-1, 1).
|
|
||||||
// Requires #include <Eigen/Array>.
|
// Eigen // Matlab
|
||||||
A.setIdentity(); // Fill A with the identity.
|
MatrixXd::Identity(rows,cols) // eye(rows,cols)
|
||||||
|
C.setIdentity(rows,cols) // C = eye(rows,cols)
|
||||||
|
MatrixXd::Zero(rows,cols) // zeros(rows,cols)
|
||||||
|
C.setZero(rows,cols) // C = ones(rows,cols)
|
||||||
|
MatrixXd::Ones(rows,cols) // ones(rows,cols)
|
||||||
|
C.setOnes(rows,cols) // C = ones(rows,cols)
|
||||||
|
MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
|
||||||
|
C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
|
||||||
|
VectorXd::LinSpace(size,low,high) // linspace(low,high,size)'
|
||||||
|
v.setLinSpace(size,low,high) // v = linspace(low,high,size)'
|
||||||
|
|
||||||
|
|
||||||
// Matrix slicing and blocks. All expressions listed here are read/write.
|
// Matrix slicing and blocks. All expressions listed here are read/write.
|
||||||
// Templated size versions are faster. Note that Matlab is 1-based (a size N
|
// Templated size versions are faster. Note that Matlab is 1-based (a size N
|
||||||
@ -78,7 +88,6 @@ a *= M; R = P + Q; R = P/s;
|
|||||||
R -= Q; R /= s;
|
R -= Q; R /= s;
|
||||||
|
|
||||||
// Vectorized operations on each element independently
|
// Vectorized operations on each element independently
|
||||||
// (most require #include <Eigen/Array>)
|
|
||||||
// Eigen // Matlab
|
// Eigen // Matlab
|
||||||
R = P.cwiseProduct(Q); // R = P .* Q
|
R = P.cwiseProduct(Q); // R = P .* Q
|
||||||
R = P.array() * s.array();// R = P .* s
|
R = P.array() * s.array();// R = P .* s
|
||||||
@ -150,12 +159,11 @@ MatrixXi mat2x2 = Map<Matrix2i>(data);
|
|||||||
MatrixXi mat2x2 = Map<MatrixXi>(data, 2, 2);
|
MatrixXi mat2x2 = Map<MatrixXi>(data, 2, 2);
|
||||||
|
|
||||||
// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
|
// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
|
||||||
bool solved;
|
x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky>
|
||||||
solved = A.ldlt().solve(b, &x)); // A sym. p.s.d. #include <Eigen/Cholesky>
|
x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky>
|
||||||
solved = A.llt() .solve(b, &x)); // A sym. p.d. #include <Eigen/Cholesky>
|
x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU>
|
||||||
solved = A.lu() .solve(b, &x)); // Stable and fast. #include <Eigen/LU>
|
x = A.qr() .solve(b)); // No pivoting. #include <Eigen/QR>
|
||||||
solved = A.qr() .solve(b, &x)); // No pivoting. #include <Eigen/QR>
|
x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD>
|
||||||
solved = A.svd() .solve(b, &x)); // Stable, slowest. #include <Eigen/SVD>
|
|
||||||
// .ldlt() -> .matrixL() and .matrixD()
|
// .ldlt() -> .matrixL() and .matrixD()
|
||||||
// .llt() -> .matrixL()
|
// .llt() -> .matrixL()
|
||||||
// .lu() -> .matrixL() and .matrixU()
|
// .lu() -> .matrixL() and .matrixU()
|
||||||
@ -168,3 +176,4 @@ A.eigenvalues(); // eig(A);
|
|||||||
EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
|
EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
|
||||||
eig.eigenvalues(); // diag(val)
|
eig.eigenvalues(); // diag(val)
|
||||||
eig.eigenvectors(); // vec
|
eig.eigenvectors(); // vec
|
||||||
|
// For self-adjoint matrices use SelfAdjointEigenSolver<>
|
||||||
|
Loading…
x
Reference in New Issue
Block a user