fixing a lot of typos

This commit is contained in:
Frédéric Chapoton 2024-07-30 22:15:49 +00:00 committed by Charles Schlosser
parent c29c800126
commit 6331da95eb
43 changed files with 73 additions and 74 deletions

View File

@ -23,7 +23,7 @@
* - translation, scaling, 2D and 3D rotations
* - \link Quaternion quaternions \endlink
* - cross products (\ref MatrixBase::cross, \ref MatrixBase::cross3)
* - orthognal vector generation (\ref MatrixBase::unitOrthogonal)
* - orthogonal vector generation (\ref MatrixBase::unitOrthogonal)
* - some linear components: \link ParametrizedLine parametrized-lines \endlink and \link Hyperplane hyperplanes
* \endlink
* - \link AlignedBox axis aligned bounding boxes \endlink

View File

@ -54,7 +54,7 @@
* \note Some of these methods (like AMD or METIS), need the sparsity pattern
* of the input matrix to be symmetric. When the matrix is structurally unsymmetric,
* Eigen computes internally the pattern of \f$A^T*A\f$ before calling the method.
* If your matrix is already symmetric (at leat in structure), you can avoid that
* If your matrix is already symmetric (at least in structure), you can avoid that
* by calling the method with a SelfAdjointView type.
*
* \code

View File

@ -425,7 +425,7 @@ class CholmodBase : public SparseSolverBase<Derived> {
RealScalar logDet = 0;
Scalar* x = static_cast<Scalar*>(m_cholmodFactor->x);
if (m_cholmodFactor->is_super) {
// Supernodal factorization stored as a packed list of dense column-major blocs,
// Supernodal factorization stored as a packed list of dense column-major blocks,
// as described by the following structure:
// super[k] == index of the first column of the j-th super node

View File

@ -402,7 +402,7 @@ struct nullary_wrapper<Scalar, NullaryOp, false, false, false> {};
#if 0 && EIGEN_COMP_MSVC > 0
// Disable this ugly workaround. This is now handled in traits<Ref>::match,
// but this piece of code might still become handly if some other weird compilation
// erros pop up again.
// errors pop up again.
// MSVC exhibits a weird compilation error when
// compiling:
@ -645,7 +645,7 @@ struct unary_evaluator<CwiseUnaryOp<core_cast_op<SrcType, DstType>, ArgType>, In
// There is no source packet type with equal or fewer elements than DstPacketType.
// This is problematic as the evaluation loop may attempt to access data outside the bounds of the array.
// For example, consider the cast utilizing pcast<Packet4f,Packet2d> with an array of size 4: {0.0f,1.0f,2.0f,3.0f}.
// The first iteration of the evaulation loop will load 16 bytes: {0.0f,1.0f,2.0f,3.0f} and cast to {0.0,1.0}, which
// The first iteration of the evaluation loop will load 16 bytes: {0.0f,1.0f,2.0f,3.0f} and cast to {0.0,1.0}, which
// is acceptable. The second iteration will load 16 bytes: {2.0f,3.0f,?,?}, which is outside the bounds of the array.
// Instead, perform runtime check to determine if the load would access data outside the bounds of the array.
@ -701,7 +701,7 @@ struct unary_evaluator<CwiseUnaryOp<core_cast_op<SrcType, DstType>, ArgType>, In
srcPacket<SrcLoadMode>(row, col, 6), srcPacket<SrcLoadMode>(row, col, 7));
}
// Analagous routines for linear access.
// Analogous routines for linear access.
template <int LoadMode, typename DstPacketType, AltSrcScalarOp<DstPacketType> = true>
EIGEN_STRONG_INLINE DstPacketType packet(Index index) const {
constexpr int DstPacketSize = unpacket_traits<DstPacketType>::size;
@ -838,7 +838,7 @@ struct ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3>, IndexBased
Data m_d;
};
// specialization for expresions like (a < b).select(c, d) to enable full vectorization
// specialization for expressions like (a < b).select(c, d) to enable full vectorization
template <typename Arg1, typename Arg2, typename Scalar, typename CmpLhsType, typename CmpRhsType, ComparisonName cmp>
struct evaluator<CwiseTernaryOp<scalar_boolean_select_op<Scalar, Scalar, bool>, Arg1, Arg2,
CwiseBinaryOp<scalar_cmp_op<Scalar, Scalar, cmp, false>, CmpLhsType, CmpRhsType>>>

View File

@ -82,7 +82,7 @@ struct AssignmentWithDevice<DstXprType, SrcXprType, Functor, Device, Dense2Dense
}
};
// this allows us to use the default evaulation scheme if it is not specialized for the device
// this allows us to use the default evaluation scheme if it is not specialized for the device
template <typename Kernel, typename Device, int Traversal = Kernel::AssignmentTraits::Traversal,
int Unrolling = Kernel::AssignmentTraits::Unrolling>
struct dense_assignment_loop_with_device {
@ -152,4 +152,4 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DeviceWrapper<const Derived, Device> Eigen
return DeviceWrapper<const Derived, Device>(derived(), device);
}
} // namespace Eigen
#endif
#endif

View File

@ -207,7 +207,7 @@ struct type_casting_traits {
};
};
// provides a succint template to define vectorized casting traits with respect to the largest accessible packet types
// provides a succinct template to define vectorized casting traits with respect to the largest accessible packet types
template <typename Src, typename Tgt>
struct vectorized_type_casting_traits {
enum : int {

View File

@ -23,7 +23,7 @@ namespace internal {
Preconditions:
1. The starting guess provided in approx_a_recip must have at least half
the leading mantissa bits in the correct result, such that a single
Newton-Raphson step is sufficient to get within 1-2 ulps of the currect
Newton-Raphson step is sufficient to get within 1-2 ulps of the correct
result.
2. If a is zero, approx_a_recip must be infinite with the same sign as a.
3. If a is infinite, approx_a_recip must be zero with the same sign as a.
@ -61,7 +61,7 @@ struct generic_reciprocal_newton_step<Packet, 0> {
Preconditions:
1. The starting guess provided in approx_a_recip must have at least half
the leading mantissa bits in the correct result, such that a single
Newton-Raphson step is sufficient to get within 1-2 ulps of the currect
Newton-Raphson step is sufficient to get within 1-2 ulps of the correct
result.
2. If a is zero, approx_a_recip must be infinite with the same sign as a.
3. If a is infinite, approx_a_recip must be zero with the same sign as a.
@ -112,7 +112,7 @@ struct generic_rsqrt_newton_step<Packet, 0> {
1. The starting guess for the reciprocal sqrt provided in approx_rsqrt must
have at least half the leading mantissa bits in the correct result, such
that a single Newton-Raphson step is sufficient to get within 1-2 ulps of
the currect result.
the correct result.
2. If a is zero, approx_rsqrt must be infinite.
3. If a is infinite, approx_rsqrt must be zero.

View File

@ -170,7 +170,7 @@ class PermutationBase : public EigenBase<Derived> {
* \note \blank \note_try_to_help_rvo
*/
inline InverseReturnType inverse() const { return InverseReturnType(derived()); }
/** \returns the tranpose permutation matrix.
/** \returns the transpose permutation matrix.
*
* \note \blank \note_try_to_help_rvo
*/

View File

@ -218,7 +218,7 @@ inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real Matr
return internal::blueNorm_impl(*this);
}
/** \returns the \em l2 norm of \c *this avoiding undeflow and overflow.
/** \returns the \em l2 norm of \c *this avoiding underflow and overflow.
* This version use a concatenation of hypot() calls, and it is very slow.
*
* \sa norm(), stableNorm()

View File

@ -91,7 +91,7 @@ class TranspositionsBase {
/** \returns the inverse transformation */
inline Transpose<TranspositionsBase> inverse() const { return Transpose<TranspositionsBase>(derived()); }
/** \returns the tranpose transformation */
/** \returns the transpose transformation */
inline Transpose<TranspositionsBase> transpose() const { return Transpose<TranspositionsBase>(derived()); }
protected:

View File

@ -38,7 +38,7 @@ struct short_circuit_eval_impl<Visitor, true> {
// unrolled inner-outer traversal
template <typename Visitor, typename Derived, int UnrollCount, bool Vectorize, bool ShortCircuitEvaluation>
struct visitor_impl<Visitor, Derived, UnrollCount, Vectorize, false, ShortCircuitEvaluation> {
// don't use short circuit evaulation for unrolled version
// don't use short circuit evaluation for unrolled version
using Scalar = typename Derived::Scalar;
using Packet = typename packet_traits<Scalar>::type;
static constexpr bool RowMajor = Derived::IsRowMajor;
@ -93,7 +93,7 @@ struct visitor_impl<Visitor, Derived, UnrollCount, Vectorize, false, ShortCircui
// unrolled linear traversal
template <typename Visitor, typename Derived, int UnrollCount, bool Vectorize, bool ShortCircuitEvaluation>
struct visitor_impl<Visitor, Derived, UnrollCount, Vectorize, true, ShortCircuitEvaluation> {
// don't use short circuit evaulation for unrolled version
// don't use short circuit evaluation for unrolled version
using Scalar = typename Derived::Scalar;
using Packet = typename packet_traits<Scalar>::type;
static constexpr int PacketSize = packet_traits<Scalar>::size;

View File

@ -1180,7 +1180,7 @@ EIGEN_STRONG_INLINE Packet8i psign(const Packet8i& a) {
}
#endif
// Add specializations for min/max with prescribed NaN progation.
// Add specializations for min/max with prescribed NaN propagation.
template <>
EIGEN_STRONG_INLINE Packet8f pmin<PropagateNumbers, Packet8f>(const Packet8f& a, const Packet8f& b) {
return pminmax_propagate_numbers(a, b, pmin<Packet8f>);

View File

@ -572,7 +572,7 @@ EIGEN_STRONG_INLINE Packet8l pmax<Packet8l>(const Packet8l& a, const Packet8l& b
return _mm512_max_epi64(b, a);
}
// Add specializations for min/max with prescribed NaN progation.
// Add specializations for min/max with prescribed NaN propagation.
template <>
EIGEN_STRONG_INLINE Packet16f pmin<PropagateNumbers, Packet16f>(const Packet16f& a, const Packet16f& b) {
return pminmax_propagate_numbers(a, b, pmin<Packet16f>);

View File

@ -206,7 +206,7 @@ EIGEN_ALWAYS_INLINE void transStoreC(PacketBlock<vec, EIGEN_ARCH_DEFAULT_NUMBER_
/**
* GEMM like operation for trsm panel updates.
* Computes: C -= A*B
* K must be multipe of 4.
* K must be multiple of 4.
*
* Unrolls used are {1,2,4,8}x{U1,U2,U3};
* For good performance we want K to be large with M/N relatively small, but also large enough

View File

@ -28,7 +28,7 @@ EIGEN_ALWAYS_INLINE int64_t idA(int64_t i, int64_t j, int64_t LDA) {
* func(startI,startJ) startJ = (startC)%(endJ)
* func(...)
*
* The 1-D loop can be unrolled recursively by using enable_if and defining an auxillary function
* The 1-D loop can be unrolled recursively by using enable_if and defining an auxiliary function
* with a template parameter used as a counter.
*
* template <endI, endJ, counter>
@ -124,7 +124,7 @@ EIGEN_ALWAYS_INLINE void trans8x8blocks(PacketBlock<Packet8d, 8> &kernel) {
}
/***
* Unrolls for tranposed C stores
* Unrolls for transposed C stores
*/
template <typename Scalar>
class trans {
@ -134,7 +134,7 @@ class trans {
static constexpr int64_t PacketSize = packet_traits<Scalar>::size;
/***********************************
* Auxillary Functions for:
* Auxiliary Functions for:
* - storeC
***********************************
*/
@ -285,7 +285,7 @@ class transB {
static constexpr int64_t PacketSize = packet_traits<Scalar>::size;
/***********************************
* Auxillary Functions for:
* Auxiliary Functions for:
* - loadB
* - storeB
* - loadBBlock
@ -588,7 +588,7 @@ class trsm {
static constexpr int64_t PacketSize = packet_traits<Scalar>::size;
/***********************************
* Auxillary Functions for:
* Auxiliary Functions for:
* - loadRHS
* - storeRHS
* - divRHSByDiag
@ -867,7 +867,7 @@ class gemm {
static constexpr int64_t PacketSize = packet_traits<Scalar>::size;
/***********************************
* Auxillary Functions for:
* Auxiliary Functions for:
* - setzero
* - updateC
* - storeC
@ -1101,7 +1101,7 @@ class gemm {
}
}
// We have updated all accumlators, time to load next set of B's
// We have updated all accumulators, time to load next set of B's
EIGEN_IF_CONSTEXPR((startN == endN - 1) && (startM == endM - 1)) {
gemm::template loadB<endM, endN, startK, endK, numLoad, numBCast, rem>(B_t, LDB, zmm, rem_);
}

View File

@ -1590,7 +1590,7 @@ EIGEN_ALWAYS_INLINE void bscalec(PacketBlock<Packet, N>& aReal, PacketBlock<Pack
pger_common<Packet, false, N>(&cImag, bImag, aReal.packet);
}
// Load a PacketBlock, the N parameters make tunning gemm easier so we can add more accumulators as needed.
// Load a PacketBlock, the N parameters make tuning gemm easier so we can add more accumulators as needed.
//
// full = operate (load) on the entire PacketBlock or only half
template <typename DataMapper, typename Packet, const Index accCols, int StorageOrder, bool Complex, int N, bool full>

View File

@ -1655,7 +1655,7 @@ EIGEN_STRONG_INLINE void twoprod(const Packet& x_hi, const Packet& x_lo, const P
}
// This function implements the division of double word {x_hi, x_lo}
// by float y. This is Algorithm 15 from "Tight and rigourous error bounds
// by float y. This is Algorithm 15 from "Tight and rigorous error bounds
// for basic building blocks of double-word arithmetic", Joldes, Muller, & Popescu,
// 2017. https://hal.archives-ouvertes.fr/hal-01351529
template <typename Packet>
@ -2376,7 +2376,7 @@ template <typename Packet, typename ScalarExponent,
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet handle_negative_exponent(const Packet& x, const ScalarExponent& exponent) {
using Scalar = typename unpacket_traits<Packet>::type;
// singed integer base, signed integer exponent case
// signed integer base, signed integer exponent case
// This routine handles negative exponents.
// The return value is either 0, 1, or -1.

View File

@ -21,7 +21,7 @@ namespace internal {
// This is needed to workaround a circular dependency.
/***************************************************************************
* Some generic implementations to be used by implementors
* Some generic implementations to be used by implementers
***************************************************************************/
/** Default implementation of pfrexp.

View File

@ -103,7 +103,7 @@ EIGEN_STRONG_INLINE Packet4f shuffle1(const Packet4f& m, int mask) {
return res;
}
// fuctionally equivalent to _mm_shuffle_ps in SSE when interleave
// functionally equivalent to _mm_shuffle_ps in SSE when interleave
// == false (i.e. shuffle<false>(m, n, mask) equals _mm_shuffle_ps(m, n, mask)),
// interleave m and n when interleave == true. Currently used in LU/arch/InverseSize4.h
// to enable a shared implementation for fast inversion of matrices of size 4.
@ -5029,7 +5029,7 @@ EIGEN_STRONG_INLINE Packet4bf pnegate<Packet4bf>(const Packet4bf& a) {
//---------- double ----------
// Clang 3.5 in the iOS toolchain has an ICE triggered by NEON intrisics for double.
// Clang 3.5 in the iOS toolchain has an ICE triggered by NEON intrinsics for double.
// Confirmed at least with __apple_build_version__ = 6000054.
#if EIGEN_COMP_CLANGAPPLE
// Let's hope that by the time __apple_build_version__ hits the 601* range, the bug will be fixed.
@ -5075,7 +5075,7 @@ typedef float64x1_t Packet1d;
EIGEN_ALWAYS_INLINE Packet2d make_packet2d(double a, double b) { return Packet2d{a, b}; }
#endif
// fuctionally equivalent to _mm_shuffle_pd in SSE (i.e. shuffle(m, n, mask) equals _mm_shuffle_pd(m,n,mask))
// functionally equivalent to _mm_shuffle_pd in SSE (i.e. shuffle(m, n, mask) equals _mm_shuffle_pd(m,n,mask))
// Currently used in LU/arch/InverseSize4.h to enable a shared implementation
// for fast inversion of matrices of size 4.
EIGEN_STRONG_INLINE Packet2d shuffle(const Packet2d& m, const Packet2d& n, int mask) {

View File

@ -1127,7 +1127,7 @@ EIGEN_STRONG_INLINE Packet pminmax_propagate_nan(const Packet& a, const Packet&
return pselect<Packet>(not_nan_mask_a, m, a);
}
// Add specializations for min/max with prescribed NaN progation.
// Add specializations for min/max with prescribed NaN propagation.
template <>
EIGEN_STRONG_INLINE Packet4f pmin<PropagateNumbers, Packet4f>(const Packet4f& a, const Packet4f& b) {
return pminmax_propagate_numbers(a, b, pmin<Packet4f>);

View File

@ -1257,7 +1257,7 @@ struct lhs_process_one_packet {
traits.initAcc(C3);
// To improve instruction pipelining, let's double the accumulation registers:
// even k will accumulate in C*, while odd k will accumulate in D*.
// This trick is crutial to get good performance with FMA, otherwise it is
// This trick is crucial to get good performance with FMA, otherwise it is
// actually faster to perform separated MUL+ADD because of a naturally
// better instruction-level parallelism.
AccPacket D0, D1, D2, D3;
@ -3130,9 +3130,8 @@ inline std::ptrdiff_t l2CacheSize() {
return l2;
}
/** \returns the currently set level 3 cpu cache size (in bytes) used to estimate the ideal blocking size paramete\
rs.
* \sa setCpuCacheSize */
/** \returns the currently set level 3 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
* \sa setCpuCacheSize */
inline std::ptrdiff_t l3CacheSize() {
std::ptrdiff_t l1, l2, l3;
internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);

View File

@ -137,7 +137,7 @@ EIGEN_BLAS_RANKUPDATE_R(double, double, dsyrk_)
EIGEN_BLAS_RANKUPDATE_R(float, float, ssyrk_)
#endif
// TODO hanlde complex cases
// TODO handle complex cases
// EIGEN_BLAS_RANKUPDATE_C(dcomplex, double, double, zherk_)
// EIGEN_BLAS_RANKUPDATE_C(scomplex, float, float, cherk_)

View File

@ -64,7 +64,7 @@ class gemv_traits {
/* Optimized col-major matrix * vector product:
* This algorithm processes the matrix per vertical panels,
* which are then processed horizontally per chunck of 8*PacketSize x 1 vertical segments.
* which are then processed horizontally per chunk of 8*PacketSize x 1 vertical segments.
*
* Mixing type logic: C += alpha * A * B
* | A | B |alpha| comments
@ -112,7 +112,7 @@ general_matrix_vector_product<Index, LhsScalar, LhsMapper, ColMajor, ConjugateLh
eigen_internal_assert(resIncr == 1);
// The following copy tells the compiler that lhs's attributes are not modified outside this function
// This helps GCC to generate propoer code.
// This helps GCC to generate proper code.
LhsMapper lhs(alhs);
conj_helper<LhsScalar, RhsScalar, ConjugateLhs, ConjugateRhs> cj;
@ -302,7 +302,7 @@ general_matrix_vector_product<Index, LhsScalar, LhsMapper, RowMajor, ConjugateLh
Version>::run(Index rows, Index cols, const LhsMapper& alhs, const RhsMapper& rhs,
ResScalar* res, Index resIncr, ResScalar alpha) {
// The following copy tells the compiler that lhs's attributes are not modified outside this function
// This helps GCC to generate propoer code.
// This helps GCC to generate proper code.
LhsMapper lhs(alhs);
eigen_internal_assert(rhs.stride() == 1);

View File

@ -152,7 +152,7 @@ const unsigned int LvalueBit = 0x20;
* Means that the underlying array of coefficients can be directly accessed as a plain strided array. The memory layout
* of the array of coefficients must be exactly the natural one suggested by rows(), cols(),
* outerStride(), innerStride(), and the RowMajorBit. This rules out expressions such as Diagonal, whose coefficients,
* though referencable, do not have such a regular memory layout.
* though referenceable, do not have such a regular memory layout.
*
* See the comment on LvalueBit for an explanation of how LvalueBit and DirectAccessBit are mutually orthogonal.
*/

View File

@ -263,8 +263,8 @@ static const auto fix();
* }
* \endcode
* In this example, the function Eigen::seqN knows that the second argument is expected to be a size.
* If the passed compile-time value N equals Eigen::Dynamic, then the proxy object returned by fix will be dissmissed,
* and converted to an Eigen::Index of value \c n. Otherwise, the runtime-value \c n will be dissmissed, and the
* If the passed compile-time value N equals Eigen::Dynamic, then the proxy object returned by fix will be dismissed,
* and converted to an Eigen::Index of value \c n. Otherwise, the runtime-value \c n will be dismissed, and the
* returned ArithmeticSequence will be of the exact same type as <tt> seqN(0,fix<N>) </tt>.
*
* \sa fix, seqN, class ArithmeticSequence

View File

@ -212,7 +212,7 @@
/// \internal EIGEN_COMP_FCC set to FCC version if the compiler is Fujitsu Compiler (traditional mode)
/// \note The Fujitsu C/C++ compiler uses the traditional mode based
/// on EDG g++ 6.1 by default or if envoked with the -Nnoclang flag
/// on EDG g++ 6.1 by default or if invoked with the -Nnoclang flag
#if defined(__FUJITSU)
#define EIGEN_COMP_FCC (__FCC_major__ * 100 + __FCC_minor__ * 10 + __FCC_patchlevel__)
#else
@ -221,7 +221,7 @@
/// \internal EIGEN_COMP_CLANGFCC set to FCC version if the compiler is Fujitsu Compiler (Clang mode)
/// \note The Fujitsu C/C++ compiler uses the non-traditional mode
/// based on Clang 7.1.0 if envoked with the -Nclang flag
/// based on Clang 7.1.0 if invoked with the -Nclang flag
#if defined(__CLANG_FUJITSU)
#define EIGEN_COMP_CLANGFCC (__FCC_major__ * 100 + __FCC_minor__ * 10 + __FCC_patchlevel__)
#else

View File

@ -361,7 +361,7 @@ GeneralizedEigenSolver<MatrixType>& GeneralizedEigenSolver<MatrixType>::compute(
// Compute eigenvector in position (i+1) and then position (i) is just the conjugate
cv.setZero();
cv.coeffRef(i + 1) = Scalar(1.0);
// here, the "static_cast" workaound expression template issues.
// here, the "static_cast" workaround expression template issues.
cv.coeffRef(i) = -(static_cast<Scalar>(beta * mS.coeffRef(i, i + 1)) - alpha * mT.coeffRef(i, i + 1)) /
(static_cast<Scalar>(beta * mS.coeffRef(i, i)) - alpha * mT.coeffRef(i, i));
for (Index j = i - 1; j >= 0; j--) {

View File

@ -60,7 +60,7 @@ class Rotation2D : public RotationBase<Rotation2D<Scalar_>, 2> {
/** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {}
/** Default constructor wihtout initialization. The represented rotation is undefined. */
/** Default constructor without initialization. The represented rotation is undefined. */
EIGEN_DEVICE_FUNC Rotation2D() {}
/** Construct a 2D rotation from a 2x2 rotation matrix \a mat.

View File

@ -35,7 +35,7 @@ namespace internal {
// // Warning, note that hCoeffs may alias with vectors.
// // It is then necessary to copy it before modifying vectors(i,i).
// typename CoeffsType::Scalar h = hCoeffs(i);
// // This hack permits to pass trough nested Block<> and Transpose<> expressions.
// // This hack permits to pass through nested Block<> and Transpose<> expressions.
// Scalar *Vii_ptr = const_cast<Scalar*>(vectors.data() + vectors.outerStride()*i + vectors.innerStride()*i);
// Scalar Vii = *Vii_ptr;
// *Vii_ptr = Scalar(1);

View File

@ -23,7 +23,7 @@ class SolveWithGuess;
*
* \brief Pseudo expression representing a solving operation
*
* \tparam Decomposition the type of the matrix or decomposion object
* \tparam Decomposition the type of the matrix or decomposition object
* \tparam Rhstype the type of the right-hand side
*
* This class represents an expression of A.solve(B)

View File

@ -24,7 +24,7 @@
//
// Copyright (c) 2001 Intel Corporation.
//
// Permition is granted to use, copy, distribute and prepare derivative works
// Permission is granted to use, copy, distribute and prepare derivative works
// of this library for any purpose and without fee, provided, that the above
// copyright notice and this statement appear in all copies.
// Intel makes no representations about the suitability of this software for

View File

@ -1374,7 +1374,7 @@ static inline void order_children(
/* order this column */
Col[c].shared2.order = order++;
/* collaps tree */
/* collapse tree */
Col[c].shared1.parent = parent;
/* get immediate parent of this column */

View File

@ -164,10 +164,10 @@ class BDCSVD : public SVDBase<BDCSVD<MatrixType_, Options_> > {
* Like the default constructor but with preallocation of the internal data
* according to the specified problem size and the \a computationOptions.
*
* One \b cannot request unitiaries using both the \a Options template parameter
* One \b cannot request unitaries using both the \a Options template parameter
* and the constructor. If possible, prefer using the \a Options template parameter.
*
* \param computationOptions specifification for computing Thin/Full unitaries U/V
* \param computationOptions specification for computing Thin/Full unitaries U/V
* \sa BDCSVD()
*
* \deprecated Will be removed in the next major Eigen version. Options should
@ -179,7 +179,7 @@ class BDCSVD : public SVDBase<BDCSVD<MatrixType_, Options_> > {
}
/** \brief Constructor performing the decomposition of given matrix, using the custom options specified
* with the \a Options template paramter.
* with the \a Options template parameter.
*
* \param matrix the matrix to decompose
*/
@ -190,11 +190,11 @@ class BDCSVD : public SVDBase<BDCSVD<MatrixType_, Options_> > {
/** \brief Constructor performing the decomposition of given matrix using specified options
* for computing unitaries.
*
* One \b cannot request unitiaries using both the \a Options template parameter
* One \b cannot request unitaries using both the \a Options template parameter
* and the constructor. If possible, prefer using the \a Options template parameter.
*
* \param matrix the matrix to decompose
* \param computationOptions specifification for computing Thin/Full unitaries U/V
* \param computationOptions specification for computing Thin/Full unitaries U/V
*
* \deprecated Will be removed in the next major Eigen version. Options should
* be specified in the \a Options template parameter.

View File

@ -559,7 +559,7 @@ class JacobiSVD : public SVDBase<JacobiSVD<MatrixType_, Options_> > {
}
/** \brief Constructor performing the decomposition of given matrix, using the custom options specified
* with the \a Options template paramter.
* with the \a Options template parameter.
*
* \param matrix the matrix to decompose
*/

View File

@ -834,7 +834,7 @@ struct sparse_disjunction_evaluator<XprType, IteratorBased, IndexBased> : evalua
const XprType& m_expr;
};
// when DupFunc is wrapped with scalar_dup_op, use disjunction evaulator
// when DupFunc is wrapped with scalar_dup_op, use disjunction evaluator
template <typename T1, typename T2, typename DupFunc, typename Lhs, typename Rhs>
struct binary_evaluator<CwiseBinaryOp<scalar_disjunction_op<DupFunc, T1, T2>, Lhs, Rhs>, IteratorBased, IteratorBased>
: sparse_disjunction_evaluator<CwiseBinaryOp<scalar_disjunction_op<DupFunc, T1, T2>, Lhs, Rhs> > {

View File

@ -250,7 +250,7 @@ class SparseMatrix : public SparseCompressedBase<SparseMatrix<Scalar_, Options_,
}
}
if ((dst < end) && (m_data.index(dst) == inner)) {
// this coefficient exists, return a refernece to it
// this coefficient exists, return a reference to it
if (inserted != nullptr) {
*inserted = false;
}
@ -1226,8 +1226,8 @@ void set_from_triplets_sorted(const InputIterator& begin, const InputIterator& e
// matrix is finalized
}
// thin wrapper around a generic binary functor to use the sparse disjunction evaulator instead of the default
// "arithmetic" evaulator
// thin wrapper around a generic binary functor to use the sparse disjunction evaluator instead of the default
// "arithmetic" evaluator
template <typename DupFunctor, typename LhsScalar, typename RhsScalar = LhsScalar>
struct scalar_disjunction_op {
using result_type = typename result_of<DupFunctor(LhsScalar, RhsScalar)>::type;
@ -1633,7 +1633,7 @@ SparseMatrix<Scalar_, Options_, StorageIndex_>::insertCompressedAtByOuterInner(I
// first, check if there is adequate allocated memory
if (m_data.allocatedSize() <= m_data.size()) {
// if there is no capacity for a single insertion, double the capacity
// increase capacity by a mininum of 32
// increase capacity by a minimum of 32
Index minReserve = 32;
Index reserveSize = numext::maxi(minReserve, m_data.allocatedSize());
m_data.reserve(reserveSize);

View File

@ -143,7 +143,7 @@ class SparseSelfAdjointView : public EigenBase<SparseSelfAdjointView<MatrixType,
return *this = src.twistedBy(pnull);
}
// Since we override the copy-assignment operator, we need to explicitly re-declare the copy-constructor
// Since we override the copy-assignment operator, we need to explicitly redeclare the copy-constructor
EIGEN_DEFAULT_COPY_CONSTRUCTOR(SparseSelfAdjointView)
template <typename SrcMatrixType, unsigned int SrcMode>

View File

@ -109,7 +109,7 @@ class SparseVector : public SparseCompressedBase<SparseVector<Scalar_, Options_,
}
/** \returns a reference to the coefficient value at given index \a i
* This operation involes a log(rho*size) binary search. If the coefficient does not
* This operation involves a log(rho*size) binary search. If the coefficient does not
* exist yet, then a sorted insertion into a sequential buffer is performed.
*
* This insertion might be very costly if the number of nonzeros above \a i is large.

View File

@ -257,7 +257,7 @@ class SparseLU : public SparseSolverBase<SparseLU<MatrixType_, OrderingType_>>,
/** \brief Give the number of rows.
*/
inline Index rows() const { return m_mat.rows(); }
/** \brief Give the numver of columns.
/** \brief Give the number of columns.
*/
inline Index cols() const { return m_mat.cols(); }
/** \brief Let you set that the pattern of the input matrix is symmetric
@ -600,7 +600,7 @@ void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat) {
* This exit was 0 if successful factorization.
* > 0 if info = i, and i is been completed, but the factor U is exactly singular,
* and division by zero will occur if it is used to solve a system of equation.
* > A->ncol: number of bytes allocated when memory allocation failure occured, plus A->ncol.
* > A->ncol: number of bytes allocated when memory allocation failure occurred, plus A->ncol.
* If lwork = -1, it is the estimated amount of space needed, plus A->ncol.
*
* It seems that A was the name of the matrix in the past.

View File

@ -50,7 +50,7 @@
* values.
*
* The last column structures (for pruning) will be removed
* after the numercial LU factorization phase.
* after the numerical LU factorization phase.
*
* (xlusup,lusup): lusup[*] contains the numerical values of the
* rectangular supernodes; xlusup[j] points to the starting

View File

@ -37,7 +37,7 @@ namespace Eigen {
namespace internal {
/**
* \brief Performs the numerical pivotin on the current column of L, and the CDIV operation.
* \brief Performs the numerical pivoting on the current column of L, and the CDIV operation.
*
* Pivot policy :
* (1) Compute thresh = u * max_(i>=j) abs(A_ij);

View File

@ -101,7 +101,7 @@ void SparseLUImpl<Scalar, StorageIndex>::pruneL(const Index jcol, const IndexVec
kmin++;
else {
// kmin below pivrow (not yet pivoted), and kmax
// above pivrow: interchange the two suscripts
// above pivrow: interchange the two subscripts
std::swap(glu.lsub(kmin), glu.lsub(kmax));
// If the supernode has only one column, then we

View File

@ -518,7 +518,7 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const UnaryPowReturnType<ScalarExponent> p
const ScalarExponent& exponent) const {
return UnaryPowReturnType<ScalarExponent>(derived(), internal::scalar_unary_pow_op<Scalar, ScalarExponent>(exponent));
#else
/** \returns an expression of the coefficients of \c *this rasied to the constant power \a exponent
/** \returns an expression of the coefficients of \c *this raised to the constant power \a exponent
*
* \tparam T is the scalar type of \a exponent. It must be compatible with the scalar type of the given expression.
*