mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-11 11:19:02 +08:00
* introduced method createRandomMatrixOfRank (R = U*D*V where U,V unitary, D r-by-c diag. with rank non-zero values)
* switched lu/qr tests to be using createRandomMatrixOfRank * removed unused methods doSomeRankPreservingOperations * removed NOTE about doSomeRankPreservingOperations
This commit is contained in:
parent
934d6b4749
commit
6358c12998
30
test/lu.cpp
30
test/lu.cpp
@ -25,44 +25,16 @@
|
||||
#include "main.h"
|
||||
#include <Eigen/LU>
|
||||
|
||||
template<typename Derived>
|
||||
void doSomeRankPreservingOperations(Eigen::MatrixBase<Derived>& m)
|
||||
{
|
||||
typedef typename Derived::RealScalar RealScalar;
|
||||
for(int a = 0; a < 3*(m.rows()+m.cols()); a++)
|
||||
{
|
||||
RealScalar d = Eigen::ei_random<RealScalar>(-1,1);
|
||||
int i = Eigen::ei_random<int>(0,m.rows()-1); // i is a random row number
|
||||
int j;
|
||||
do {
|
||||
j = Eigen::ei_random<int>(0,m.rows()-1);
|
||||
} while (i==j); // j is another one (must be different)
|
||||
m.row(i) += d * m.row(j);
|
||||
|
||||
i = Eigen::ei_random<int>(0,m.cols()-1); // i is a random column number
|
||||
do {
|
||||
j = Eigen::ei_random<int>(0,m.cols()-1);
|
||||
} while (i==j); // j is another one (must be different)
|
||||
m.col(i) += d * m.col(j);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType> void lu_non_invertible()
|
||||
{
|
||||
/* this test covers the following files:
|
||||
LU.h
|
||||
*/
|
||||
// NOTE there seems to be a problem with too small sizes -- could easily lie in the doSomeRankPreservingOperations function
|
||||
int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200);
|
||||
int rank = ei_random<int>(1, std::min(rows, cols)-1);
|
||||
|
||||
MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1);
|
||||
m1 = MatrixType::Random(rows,cols);
|
||||
if(rows <= cols)
|
||||
for(int i = rank; i < rows; i++) m1.row(i).setZero();
|
||||
else
|
||||
for(int i = rank; i < cols; i++) m1.col(i).setZero();
|
||||
doSomeRankPreservingOperations(m1);
|
||||
createRandomMatrixOfRank(rank, rows, cols, m1);
|
||||
|
||||
LU<MatrixType> lu(m1);
|
||||
typename LU<MatrixType>::KernelResultType m1kernel = lu.kernel();
|
||||
|
21
test/main.h
21
test/main.h
@ -136,6 +136,7 @@ namespace Eigen
|
||||
#define EIGEN_INTERNAL_DEBUGGING
|
||||
#define EIGEN_NICE_RANDOM
|
||||
#include <Eigen/Array>
|
||||
#include <Eigen/QR> // required for createRandomMatrixOfRank
|
||||
|
||||
|
||||
#define VERIFY(a) do { if (!(a)) { \
|
||||
@ -225,6 +226,26 @@ inline bool test_ei_isMuchSmallerThan(const MatrixBase<Derived>& m,
|
||||
return m.isMuchSmallerThan(s, test_precision<typename ei_traits<Derived>::Scalar>());
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
void createRandomMatrixOfRank(int desired_rank, int rows, int cols, Eigen::MatrixBase<Derived>& m)
|
||||
{
|
||||
typedef Derived MatrixType;
|
||||
typedef MatrixType::Scalar Scalar;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||
|
||||
MatrixType a = MatrixType::Random(rows,rows);
|
||||
MatrixType d = MatrixType::Identity(rows,cols);
|
||||
MatrixType b = MatrixType::Random(cols,cols);
|
||||
|
||||
// set the diagonal such that only desired_rank non-zero entries reamain
|
||||
const int diag_size = std::min(d.rows(),d.cols());
|
||||
d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank);
|
||||
|
||||
QR<MatrixType> qra(a);
|
||||
QR<MatrixType> qrb(b);
|
||||
m = (qra.matrixQ() * d * qrb.matrixQ()).lazy();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
template<typename T> struct GetDifferentType;
|
||||
|
30
test/qr.cpp
30
test/qr.cpp
@ -55,42 +55,14 @@ template<typename MatrixType> void qr(const MatrixType& m)
|
||||
VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
void doSomeRankPreservingOperations(Eigen::MatrixBase<Derived>& m)
|
||||
{
|
||||
typedef typename Derived::RealScalar RealScalar;
|
||||
for(int a = 0; a < 3*(m.rows()+m.cols()); a++)
|
||||
{
|
||||
RealScalar d = Eigen::ei_random<RealScalar>(-1,1);
|
||||
int i = Eigen::ei_random<int>(0,m.rows()-1); // i is a random row number
|
||||
int j;
|
||||
do {
|
||||
j = Eigen::ei_random<int>(0,m.rows()-1);
|
||||
} while (i==j); // j is another one (must be different)
|
||||
m.row(i) += d * m.row(j);
|
||||
|
||||
i = Eigen::ei_random<int>(0,m.cols()-1); // i is a random column number
|
||||
do {
|
||||
j = Eigen::ei_random<int>(0,m.cols()-1);
|
||||
} while (i==j); // j is another one (must be different)
|
||||
m.col(i) += d * m.col(j);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType> void qr_non_invertible()
|
||||
{
|
||||
/* this test covers the following files: QR.h */
|
||||
// NOTE there seems to be a problem with too small sizes -- could easily lie in the doSomeRankPreservingOperations function
|
||||
int rows = ei_random<int>(20,200), cols = ei_random<int>(20,rows), cols2 = ei_random<int>(20,rows);
|
||||
int rank = ei_random<int>(1, std::min(rows, cols)-1);
|
||||
|
||||
MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1);
|
||||
m1 = MatrixType::Random(rows,cols);
|
||||
if(rows <= cols)
|
||||
for(int i = rank; i < rows; i++) m1.row(i).setZero();
|
||||
else
|
||||
for(int i = rank; i < cols; i++) m1.col(i).setZero();
|
||||
doSomeRankPreservingOperations(m1);
|
||||
createRandomMatrixOfRank(rank, rows, cols, m1);
|
||||
|
||||
QR<MatrixType> lu(m1);
|
||||
// typename LU<MatrixType>::KernelResultType m1kernel = lu.kernel();
|
||||
|
Loading…
x
Reference in New Issue
Block a user