Added AlignedBox::transform(AffineTransform).

This commit is contained in:
Martin Pecka 2020-09-28 18:06:23 +00:00 committed by Rasmus Munk Larsen
parent a967fadb21
commit 6425e875a1
2 changed files with 483 additions and 11 deletions

View File

@ -7,6 +7,42 @@
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// Function void Eigen::AlignedBox::transform(const Transform& transform)
// is provided under the following license agreement:
//
// Software License Agreement (BSD License)
//
// Copyright (c) 2011-2014, Willow Garage, Inc.
// Copyright (c) 2014-2015, Open Source Robotics Foundation
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Open Source Robotics Foundation nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
#ifndef EIGEN_ALIGNEDBOX_H
#define EIGEN_ALIGNEDBOX_H
@ -246,6 +282,15 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
return *this;
}
/** \returns a copy of \c *this translated by the vector \a t. */
template<typename Derived>
EIGEN_DEVICE_FUNC inline AlignedBox translated(const MatrixBase<Derived>& a_t) const
{
AlignedBox result(m_min, m_max);
result.translate(a_t);
return result;
}
/** \returns the squared distance between the point \a p and the box \c *this,
* and zero if \a p is inside the box.
* \sa exteriorDistance(const MatrixBase&), squaredExteriorDistance(const AlignedBox&)
@ -274,6 +319,55 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const AlignedBox& b) const
{ EIGEN_USING_STD_MATH(sqrt) return sqrt(NonInteger(squaredExteriorDistance(b))); }
/**
* Specialization of transform for pure translation.
*/
template<int Mode, int Options>
EIGEN_DEVICE_FUNC inline void transform(
const typename Transform<Scalar, AmbientDimAtCompileTime, Mode, Options>::TranslationType& translation)
{
this->translate(translation);
}
/**
* Transforms this box by \a transform and recomputes it to
* still be an axis-aligned box.
*
* \note This method is provided under BSD license (see the top of this file).
*/
template<int Mode, int Options>
EIGEN_DEVICE_FUNC inline void transform(const Transform<Scalar, AmbientDimAtCompileTime, Mode, Options>& transform)
{
// Projective transform is not (yet) supported
EIGEN_STATIC_ASSERT(Mode != Projective, THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS);
// Method adapted from FCL src/shape/geometric_shapes_utility.cpp#computeBV<AABB, Box>(...)
// https://github.com/flexible-collision-library/fcl/blob/fcl-0.4/src/shape/geometric_shapes_utility.cpp#L292
//
// Here's a nice explanation why it works: https://zeuxcg.org/2010/10/17/aabb-from-obb-with-component-wise-abs/
// two times rotated extent
const VectorType rotated_extent_2 = transform.linear().cwiseAbs() * sizes();
// two times new center
const VectorType rotated_center_2 = transform.linear() * (this->m_max + this->m_min) +
Scalar(2) * transform.translation();
this->m_max = (rotated_center_2 + rotated_extent_2) / Scalar(2);
this->m_min = (rotated_center_2 - rotated_extent_2) / Scalar(2);
}
/**
* \returns a copy of \c *this transformed by \a transform and recomputed to
* still be an axis-aligned box.
*/
template<int Mode, int Options>
EIGEN_DEVICE_FUNC AlignedBox transformed(const Transform<Scalar, AmbientDimAtCompileTime, Mode, Options>& transform) const
{
AlignedBox result(m_min, m_max);
result.transform(transform);
return result;
}
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this

View File

@ -9,14 +9,12 @@
#include "main.h"
#include <Eigen/Geometry>
#include <Eigen/LU>
#include <Eigen/QR>
#include<iostream>
using namespace std;
// NOTE the following workaround was needed on some 32 bits builds to kill extra precision of x87 registers.
// It seems that it os not needed anymore, but let's keep it here, just in case...
// It seems that it is not needed anymore, but let's keep it here, just in case...
template<typename T> EIGEN_DONT_INLINE
void kill_extra_precision(T& /* x */) {
@ -34,7 +32,8 @@ template<typename BoxType> void alignedbox(const BoxType& _box)
AlignedBox.h
*/
typedef typename BoxType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef NumTraits<Scalar> ScalarTraits;
typedef typename ScalarTraits::Real RealScalar;
typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
const Index dim = _box.dim();
@ -88,7 +87,386 @@ template<typename BoxType> void alignedbox(const BoxType& _box)
}
template<typename BoxType> void alignedboxTranslatable(const BoxType& _box)
{
typedef typename BoxType::Scalar Scalar;
typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform;
typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform;
alignedbox(_box);
const VectorType Ones = VectorType::Ones();
const VectorType UnitX = VectorType::UnitX();
const Index dim = _box.dim();
// box((-1, -1, -1), (1, 1, 1))
BoxType a(-Ones, Ones);
VERIFY_IS_APPROX(a.sizes(), Ones * Scalar(2));
BoxType b = a;
VectorType translate = Ones;
translate[0] = Scalar(2);
b.translate(translate);
// translate by (2, 1, 1) -> box((1, 0, 0), (3, 2, 2))
VERIFY_IS_APPROX(b.sizes(), Ones * Scalar(2));
VERIFY_IS_APPROX((b.min)(), UnitX);
VERIFY_IS_APPROX((b.max)(), Ones * Scalar(2) + UnitX);
// Test transform
IsometryTransform tf = IsometryTransform::Identity();
tf.translation() = -translate;
BoxType c = b.transformed(tf);
// translate by (-2, -1, -1) -> box((-1, -1, -1), (1, 1, 1))
VERIFY_IS_APPROX(c.sizes(), a.sizes());
VERIFY_IS_APPROX((c.min)(), (a.min)());
VERIFY_IS_APPROX((c.max)(), (a.max)());
c.transform(tf);
// translate by (-2, -1, -1) -> box((-3, -2, -2), (-1, 0, 0))
VERIFY_IS_APPROX(c.sizes(), a.sizes());
VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) - UnitX);
VERIFY_IS_APPROX((c.max)(), -UnitX);
// Scaling
AffineTransform atf = AffineTransform::Identity();
atf.scale(Scalar(3));
c.transform(atf);
// scale by 3 -> box((-9, -6, -6), (-3, 0, 0))
VERIFY_IS_APPROX(c.sizes(), Scalar(3) * a.sizes());
VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-6) - UnitX * Scalar(3));
VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(-3));
atf = AffineTransform::Identity();
atf.scale(Scalar(-3));
c.transform(atf);
// scale by -3 -> box((27, 18, 18), (9, 0, 0))
VERIFY_IS_APPROX(c.sizes(), Scalar(9) * a.sizes());
VERIFY_IS_APPROX((c.min)(), UnitX * Scalar(9));
VERIFY_IS_APPROX((c.max)(), Ones * Scalar(18) + UnitX * Scalar(9));
// test for roundoff errors
IsometryTransform identity = IsometryTransform::Identity();
BoxType transformedC;
transformedC.extend(c.transformed(identity));
VERIFY(transformedC.contains(c));
for (size_t i = 0; i < 10; ++i)
{
VectorType minCorner;
VectorType maxCorner;
for (Index d = 0; d < dim; ++d)
{
minCorner[d] = internal::random<Scalar>(-10,10);
maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
}
c = BoxType(minCorner, maxCorner);
translate = VectorType::Random();
c.translate(translate);
VERIFY_IS_APPROX((c.min)(), minCorner + translate);
VERIFY_IS_APPROX((c.max)(), maxCorner + translate);
}
}
template<typename Scalar, typename Rotation>
Rotation rotate2D(Scalar _angle) {
return Rotation2D<Scalar>(_angle);
}
template<typename Scalar, typename Rotation>
Rotation rotate2DIntegral(typename NumTraits<Scalar>::NonInteger _angle) {
typedef typename NumTraits<Scalar>::NonInteger NonInteger;
return Rotation2D<NonInteger>(_angle).toRotationMatrix().
template cast<Scalar>();
}
template<typename Scalar, typename Rotation>
Rotation rotate3DZAxis(Scalar _angle) {
return AngleAxis<Scalar>(_angle, Matrix<Scalar, 3, 1>(0, 0, 1));
}
template<typename Scalar, typename Rotation>
Rotation rotate3DZAxisIntegral(typename NumTraits<Scalar>::NonInteger _angle) {
typedef typename NumTraits<Scalar>::NonInteger NonInteger;
return AngleAxis<NonInteger>(_angle, Matrix<NonInteger, 3, 1>(0, 0, 1)).
toRotationMatrix().template cast<Scalar>();
}
template<typename Scalar, typename Rotation>
Rotation rotate4DZWAxis(Scalar _angle) {
Rotation result = Matrix<Scalar, 4, 4>::Identity();
result.block(0, 0, 3, 3) = rotate3DZAxis<Scalar, AngleAxisd>(_angle).toRotationMatrix();
return result;
}
template <typename MatrixType>
MatrixType randomRotationMatrix()
{
// algorithm from
// https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-7/103/2016/isprs-annals-III-7-103-2016.pdf
const MatrixType rand = MatrixType::Random();
const MatrixType q = rand.householderQr().householderQ();
const JacobiSVD<MatrixType> svd = q.jacobiSvd(ComputeFullU | ComputeFullV);
const typename MatrixType::Scalar det = (svd.matrixU() * svd.matrixV().transpose()).determinant();
MatrixType diag = rand.Identity();
diag(MatrixType::RowsAtCompileTime - 1, MatrixType::ColsAtCompileTime - 1) = det;
const MatrixType rotation = svd.matrixU() * diag * svd.matrixV().transpose();
return rotation;
}
template <typename Scalar, int Dim>
std::vector<Matrix<Scalar, Dim, 1> > boxGetCorners(const Matrix<Scalar, Dim, 1>& _min, const Matrix<Scalar, Dim, 1>& _max, int dim = Dim)
{
std::vector<Matrix<Scalar, Dim, 1> > result;
if (dim == 1)
{
result.push_back(_min);
result.push_back(_max);
}
else
{
std::vector<Matrix<Scalar, Dim, 1> > shorter = boxGetCorners(_min, _max, dim - 1);
for (size_t i = 0; i < shorter.size(); ++i)
{
Matrix<Scalar, Dim , 1> vec = shorter[i];
Matrix<Scalar, Dim, 1> vec1 = _min;
vec1.block(Dim - dim, 0, dim - 1, 1) = vec.block(Dim - dim, 0, dim - 1, 1);
result.push_back(vec1);
Matrix<Scalar, Dim, 1> vec2 = _max;
vec2.block(Dim - dim, 0, dim - 1, 1) = vec.block(Dim - dim, 0, dim - 1, 1);
result.push_back(vec2);
}
}
return result;
}
template<typename BoxType, typename Rotation> void alignedboxRotatable(
const BoxType& _box,
Rotation (*_rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/))
{
alignedboxTranslatable(_box);
typedef typename BoxType::Scalar Scalar;
typedef typename NumTraits<Scalar>::NonInteger NonInteger;
typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform;
typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform;
const VectorType Zero = VectorType::Zero();
const VectorType Ones = VectorType::Ones();
const VectorType UnitX = VectorType::UnitX();
const VectorType UnitY = VectorType::UnitY();
// this is vector (0, 0, -1, -1, -1, ...), i.e. with zeros at first and second dimensions
const VectorType UnitZ = Ones - UnitX - UnitY;
// in this kind of comments the 3D case values will be illustrated
// box((-1, -1, -1), (1, 1, 1))
BoxType a(-Ones, Ones);
// to allow templating this test for both 2D and 3D cases, we always set all
// but the first coordinate to the same value; so basically 3D case works as
// if you were looking at the scene from top
VectorType minPoint = -2 * Ones;
minPoint[0] = -3;
VectorType maxPoint = Zero;
maxPoint[0] = -1;
BoxType c(minPoint, maxPoint);
// box((-3, -2, -2), (-1, 0, 0))
IsometryTransform tf2 = IsometryTransform::Identity();
// for some weird reason the following statement has to be put separate from
// the following rotate call, otherwise precision problems arise...
Rotation rot = _rotate(NonInteger(EIGEN_PI));
tf2.rotate(rot);
c.transform(tf2);
// rotate by 180 deg around origin -> box((1, 0, -2), (3, 2, 0))
VERIFY_IS_APPROX(c.sizes(), a.sizes());
VERIFY_IS_APPROX((c.min)(), UnitX - UnitZ * Scalar(2));
VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(3) + UnitY * Scalar(2));
rot = _rotate(NonInteger(EIGEN_PI / 2));
tf2.setIdentity();
tf2.rotate(rot);
c.transform(tf2);
// rotate by 90 deg around origin -> box((-2, 1, -2), (0, 3, 0))
VERIFY_IS_APPROX(c.sizes(), a.sizes());
VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) + UnitY * Scalar(3));
VERIFY_IS_APPROX((c.max)(), UnitY * Scalar(3));
// box((-1, -1, -1), (1, 1, 1))
AffineTransform atf = AffineTransform::Identity();
atf.linearExt()(0, 1) = Scalar(1);
c = BoxType(-Ones, Ones);
c.transform(atf);
// 45 deg shear in x direction -> box((-2, -1, -1), (2, 1, 1))
VERIFY_IS_APPROX(c.sizes(), Ones * Scalar(2) + UnitX * Scalar(2));
VERIFY_IS_APPROX((c.min)(), -Ones - UnitX);
VERIFY_IS_APPROX((c.max)(), Ones + UnitX);
}
template<typename BoxType, typename Rotation> void alignedboxNonIntegralRotatable(
const BoxType& _box,
Rotation (*_rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/))
{
alignedboxRotatable(_box, _rotate);
typedef typename BoxType::Scalar Scalar;
typedef typename NumTraits<Scalar>::NonInteger NonInteger;
typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform;
typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform;
const Index dim = _box.dim();
const VectorType Zero = VectorType::Zero();
const VectorType Ones = VectorType::Ones();
const VectorType UnitX = VectorType::UnitX();
const VectorType UnitY = VectorType::UnitY();
// this is vector (0, 0, -1, -1, -1, ...), i.e. with zeros at first and second dimensions
const VectorType UnitZ = Ones - UnitX - UnitY;
VectorType minPoint = -2 * Ones;
minPoint[1] = 1;
VectorType maxPoint = Zero;
maxPoint[1] = 3;
BoxType c(minPoint, maxPoint);
// ((-2, 1, -2), (0, 3, 0))
VectorType cornerBL = (c.min)();
VectorType cornerTR = (c.max)();
VectorType cornerBR = (c.min)(); cornerBR[0] = cornerTR[0];
VectorType cornerTL = (c.max)(); cornerTL[0] = cornerBL[0];
NonInteger angle = NonInteger(EIGEN_PI/3);
Rotation rot = _rotate(angle);
IsometryTransform tf2;
tf2.setIdentity();
tf2.rotate(rot);
c.transform(tf2);
// rotate by 60 deg -> box((-3.59, -1.23, -2), (-0.86, 1.5, 0))
cornerBL = tf2 * cornerBL;
cornerBR = tf2 * cornerBR;
cornerTL = tf2 * cornerTL;
cornerTR = tf2 * cornerTR;
VectorType minCorner = Ones * Scalar(-2);
VectorType maxCorner = Zero;
minCorner[0] = (min)((min)(cornerBL[0], cornerBR[0]), (min)(cornerTL[0], cornerTR[0]));
maxCorner[0] = (max)((max)(cornerBL[0], cornerBR[0]), (max)(cornerTL[0], cornerTR[0]));
minCorner[1] = (min)((min)(cornerBL[1], cornerBR[1]), (min)(cornerTL[1], cornerTR[1]));
maxCorner[1] = (max)((max)(cornerBL[1], cornerBR[1]), (max)(cornerTL[1], cornerTR[1]));
for (Index d = 2; d < dim; ++d)
VERIFY_IS_APPROX(c.sizes()[d], Scalar(2));
VERIFY_IS_APPROX((c.min)(), minCorner);
VERIFY_IS_APPROX((c.max)(), maxCorner);
VectorType minCornerValue = Ones * Scalar(-2);
VectorType maxCornerValue = Zero;
minCornerValue[0] = Scalar(Scalar(-sqrt(2*2 + 3*3)) * Scalar(cos(Scalar(atan(2.0/3.0)) - angle/2)));
minCornerValue[1] = Scalar(Scalar(-sqrt(1*1 + 2*2)) * Scalar(sin(Scalar(atan(2.0/1.0)) - angle/2)));
maxCornerValue[0] = Scalar(-sin(angle));
maxCornerValue[1] = Scalar(3 * cos(angle));
VERIFY_IS_APPROX((c.min)(), minCornerValue);
VERIFY_IS_APPROX((c.max)(), maxCornerValue);
// randomized test - translate and rotate the box and compare to a box made of transformed vertices
for (size_t i = 0; i < 10; ++i)
{
for (Index d = 0; d < dim; ++d)
{
minCorner[d] = internal::random<Scalar>(-10,10);
maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
}
c = BoxType(minCorner, maxCorner);
std::vector<VectorType> corners = boxGetCorners(minCorner, maxCorner);
const size_t numCorners = corners.size();
typename AffineTransform::LinearMatrixType rotation =
randomRotationMatrix<typename AffineTransform::LinearMatrixType>();
tf2.setIdentity();
tf2.rotate(rotation);
tf2.translate(VectorType::Random());
c.transform(tf2);
for (size_t corner = 0; corner < numCorners; ++corner)
corners[corner] = tf2 * corners[corner];
for (Index d = 0; d < dim; ++d)
{
minCorner[d] = corners[0][d];
maxCorner[d] = corners[0][d];
for (size_t corner = 0; corner < numCorners; ++corner)
{
minCorner[d] = (min)(minCorner[d], corners[corner][d]);
maxCorner[d] = (max)(maxCorner[d], corners[corner][d]);
}
}
VERIFY_IS_APPROX((c.min)(), minCorner);
VERIFY_IS_APPROX((c.max)(), maxCorner);
}
// randomized test - transform the box with a random affine matrix and compare to a box made of transformed vertices
for (size_t i = 0; i < 10; ++i)
{
for (Index d = 0; d < dim; ++d)
{
minCorner[d] = internal::random<Scalar>(-10,10);
maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
}
c = BoxType(minCorner, maxCorner);
std::vector<VectorType> corners = boxGetCorners(minCorner, maxCorner);
const size_t numCorners = corners.size();
AffineTransform atf = AffineTransform::Identity();
atf.linearExt() = AffineTransform::LinearPart::Random();
atf.translate(VectorType::Random());
c.transform(atf);
for (size_t corner = 0; corner < numCorners; ++corner)
corners[corner] = atf * corners[corner];
for (Index d = 0; d < dim; ++d)
{
minCorner[d] = corners[0][d];
maxCorner[d] = corners[0][d];
for (size_t corner = 0; corner < numCorners; ++corner)
{
minCorner[d] = (min)(minCorner[d], corners[corner][d]);
maxCorner[d] = (max)(maxCorner[d], corners[corner][d]);
}
}
VERIFY_IS_APPROX((c.min)(), minCorner);
VERIFY_IS_APPROX((c.max)(), maxCorner);
}
}
template<typename BoxType>
void alignedboxCastTests(const BoxType& _box)
@ -173,21 +551,21 @@ EIGEN_DECLARE_TEST(geo_alignedbox)
{
for(int i = 0; i < g_repeat; i++)
{
CALL_SUBTEST_1( alignedbox(AlignedBox2f()) );
CALL_SUBTEST_1( (alignedboxNonIntegralRotatable<AlignedBox2f, Rotation2Df>(AlignedBox2f(), &rotate2D)) );
CALL_SUBTEST_2( alignedboxCastTests(AlignedBox2f()) );
CALL_SUBTEST_3( alignedbox(AlignedBox3f()) );
CALL_SUBTEST_3( (alignedboxNonIntegralRotatable<AlignedBox3f, AngleAxisf>(AlignedBox3f(), &rotate3DZAxis)) );
CALL_SUBTEST_4( alignedboxCastTests(AlignedBox3f()) );
CALL_SUBTEST_5( alignedbox(AlignedBox4d()) );
CALL_SUBTEST_5( (alignedboxNonIntegralRotatable<AlignedBox4d, Matrix4d>(AlignedBox4d(), &rotate4DZWAxis)) );
CALL_SUBTEST_6( alignedboxCastTests(AlignedBox4d()) );
CALL_SUBTEST_7( alignedbox(AlignedBox1d()) );
CALL_SUBTEST_7( alignedboxTranslatable(AlignedBox1d()) );
CALL_SUBTEST_8( alignedboxCastTests(AlignedBox1d()) );
CALL_SUBTEST_9( alignedbox(AlignedBox1i()) );
CALL_SUBTEST_10( alignedbox(AlignedBox2i()) );
CALL_SUBTEST_11( alignedbox(AlignedBox3i()) );
CALL_SUBTEST_9( alignedboxTranslatable(AlignedBox1i()) );
CALL_SUBTEST_10( (alignedboxRotatable<AlignedBox2i, Matrix2i>(AlignedBox2i(), &rotate2DIntegral<int, Matrix2i>)) );
CALL_SUBTEST_11( (alignedboxRotatable<AlignedBox3i, Matrix3i>(AlignedBox3i(), &rotate3DZAxisIntegral<int, Matrix3i>)) );
CALL_SUBTEST_14( alignedbox(AlignedBox<double,Dynamic>(4)) );
}