mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 03:39:01 +08:00
code simplification
This commit is contained in:
parent
cacbc5679d
commit
64753af3b7
@ -73,7 +73,6 @@ bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Precondition
|
|||||||
// residual and preconditioned residual
|
// residual and preconditioned residual
|
||||||
VectorType p0 = rhs - mat*x;
|
VectorType p0 = rhs - mat*x;
|
||||||
VectorType r0 = precond.solve(p0);
|
VectorType r0 = precond.solve(p0);
|
||||||
VectorType t(m), v(m), workspace(m);
|
|
||||||
|
|
||||||
const RealScalar r0Norm = r0.norm();
|
const RealScalar r0Norm = r0.norm();
|
||||||
|
|
||||||
@ -92,6 +91,9 @@ bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Precondition
|
|||||||
// storage for Jacobi rotations
|
// storage for Jacobi rotations
|
||||||
std::vector < JacobiRotation < Scalar > > G(restart);
|
std::vector < JacobiRotation < Scalar > > G(restart);
|
||||||
|
|
||||||
|
// storage for temporaries
|
||||||
|
VectorType t(m), v(m), workspace(m), x_new(m);
|
||||||
|
|
||||||
// generate first Householder vector
|
// generate first Householder vector
|
||||||
Ref<VectorType> H0_tail = H.col(0).tail(m - 1);
|
Ref<VectorType> H0_tail = H.col(0).tail(m - 1);
|
||||||
RealScalar beta;
|
RealScalar beta;
|
||||||
@ -105,15 +107,17 @@ bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Precondition
|
|||||||
v = VectorType::Unit(m, k - 1);
|
v = VectorType::Unit(m, k - 1);
|
||||||
|
|
||||||
// apply Householder reflections H_{1} ... H_{k-1} to v
|
// apply Householder reflections H_{1} ... H_{k-1} to v
|
||||||
|
// TODO: use a HouseholderSequence
|
||||||
for (Index i = k - 1; i >= 0; --i) {
|
for (Index i = k - 1; i >= 0; --i) {
|
||||||
v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
||||||
}
|
}
|
||||||
|
|
||||||
// apply matrix M to v: v = mat * v;
|
// apply matrix M to v: v = mat * v;
|
||||||
t=mat*v;
|
t.noalias() = mat * v;
|
||||||
v = precond.solve(t);
|
v = precond.solve(t);
|
||||||
|
|
||||||
// apply Householder reflections H_{k-1} ... H_{1} to v
|
// apply Householder reflections H_{k-1} ... H_{1} to v
|
||||||
|
// TODO: use a HouseholderSequence
|
||||||
for (Index i = 0; i < k; ++i) {
|
for (Index i = 0; i < k; ++i) {
|
||||||
v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
||||||
}
|
}
|
||||||
@ -158,18 +162,14 @@ bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Precondition
|
|||||||
if (stop || k == restart)
|
if (stop || k == restart)
|
||||||
{
|
{
|
||||||
// solve upper triangular system
|
// solve upper triangular system
|
||||||
VectorType y = w.head(k);
|
Ref<VectorType> y = w.head(k);
|
||||||
H.topLeftCorner(k, k).template triangularView <Upper>().solveInPlace(y);
|
H.topLeftCorner(k, k).template triangularView <Upper>().solveInPlace(y);
|
||||||
|
|
||||||
// use Horner-like scheme to calculate solution vector
|
// use Horner-like scheme to calculate solution vector
|
||||||
VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
|
x_new.setZero();
|
||||||
|
for (Index i = k - 1; i >= 0; --i)
|
||||||
// apply Householder reflection H_{k} to x_new
|
|
||||||
x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
|
|
||||||
|
|
||||||
for (Index i = k - 2; i >= 0; --i)
|
|
||||||
{
|
{
|
||||||
x_new += y(i) * VectorType::Unit(m, i);
|
x_new(i) += y(i);
|
||||||
// apply Householder reflection H_{i} to x_new
|
// apply Householder reflection H_{i} to x_new
|
||||||
x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
||||||
}
|
}
|
||||||
@ -185,17 +185,17 @@ bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Precondition
|
|||||||
k=0;
|
k=0;
|
||||||
|
|
||||||
// reset data for restart
|
// reset data for restart
|
||||||
p0 = rhs - mat*x;
|
p0.noalias() = rhs - mat*x;
|
||||||
r0 = precond.solve(p0);
|
r0 = precond.solve(p0);
|
||||||
|
|
||||||
// clear Hessenberg matrix and Householder data
|
// clear Hessenberg matrix and Householder data
|
||||||
H = FMatrixType::Zero(m, restart + 1);
|
H.setZero();
|
||||||
w = VectorType::Zero(restart + 1);
|
w.setZero();
|
||||||
tau = VectorType::Zero(restart + 1);
|
tau.setZero();
|
||||||
|
|
||||||
// generate first Householder vector
|
// generate first Householder vector
|
||||||
r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
|
r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
|
||||||
w(0)=(Scalar) beta;
|
w(0) = Scalar(beta);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user