diff --git a/unsupported/Eigen/IterativeSolvers b/unsupported/Eigen/IterativeSolvers index 42f4a32f1..e690b0300 100644 --- a/unsupported/Eigen/IterativeSolvers +++ b/unsupported/Eigen/IterativeSolvers @@ -41,8 +41,11 @@ namespace Eigen { */ //@{ +#include "../../Eigen/src/misc/Solve.h" + #include "src/IterativeSolvers/IterationController.h" #include "src/IterativeSolvers/ConstrainedConjGrad.h" +#include "src/IterativeSolvers/BasicPreconditioners.h" #include "src/IterativeSolvers/ConjugateGradient.h" //@} diff --git a/unsupported/Eigen/src/IterativeSolvers/BasicPreconditioners.h b/unsupported/Eigen/src/IterativeSolvers/BasicPreconditioners.h new file mode 100644 index 000000000..b016e5bf3 --- /dev/null +++ b/unsupported/Eigen/src/IterativeSolvers/BasicPreconditioners.h @@ -0,0 +1,139 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2011 Gael Guennebaud +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see . + +#ifndef EIGEN_BASIC_PRECONDITIONERS_H +#define EIGEN_BASIC_PRECONDITIONERS_H + +/** \brief A preconditioner based on the digonal entries + * + * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix. + * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: + * \code + * A.diagonal().asDiagonal() . x = b + * \endcode + * + * \tparam _Scalar the type of the scalar. + * + * This preconditioner is suitable for both selfadjoint and general problems. + * The diagonal entries are pre-inverted and stored into a dense vector. + * + * \note A variant that has yet to be implemented would attempt to preserve the norm of each column. + * + */ +template +class DiagonalPreconditioner +{ + typedef _Scalar Scalar; + typedef Matrix Vector; + typedef typename Vector::Index Index; + + public: + typedef Matrix MatrixType; + + DiagonalPreconditioner() : m_isInitialized(false) {} + + template + DiagonalPreconditioner(const MatrixType& mat) : m_invdiag(mat.cols()) + { + compute(mat); + } + + Index rows() const { return m_invdiag.size(); } + Index cols() const { return m_invdiag.size(); } + + template + DiagonalPreconditioner& compute(const MatrixType& mat) + { + m_invdiag.resize(mat.cols()); + for(int j=0; j + void _solve(const Rhs& b, Dest& x) const + { + x = m_invdiag.array() * b.array() ; + } + + template inline const internal::solve_retval + solve(const MatrixBase& b) const + { + eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized."); + eigen_assert(m_invdiag.size()==b.rows() + && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b"); + return internal::solve_retval(*this, b.derived()); + } + + protected: + Vector m_invdiag; + bool m_isInitialized; +}; + +namespace internal { + +template +struct solve_retval, Rhs> + : solve_retval_base, Rhs> +{ + typedef DiagonalPreconditioner<_MatrixType> Dec; + EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) + + template void evalTo(Dest& dst) const + { + dec()._solve(rhs(),dst); + } +}; + +} + +/** \brief A naive preconditioner which approximates any matrix as the identity matrix + * + * \sa class DiagonalPreconditioner + */ +class IdentityPreconditioner +{ + public: + + IdentityPreconditioner() {} + + template + IdentityPreconditioner(const MatrixType& ) {} + + template + IdentityPreconditioner& compute(const MatrixType& ) { return *this; } + + template + inline const Rhs& solve(const Rhs& b) const { return b; } +}; + +#endif // EIGEN_BASIC_PRECONDITIONERS_H diff --git a/unsupported/Eigen/src/IterativeSolvers/ConjugateGradient.h b/unsupported/Eigen/src/IterativeSolvers/ConjugateGradient.h index 52d167b72..9054e55a7 100644 --- a/unsupported/Eigen/src/IterativeSolvers/ConjugateGradient.h +++ b/unsupported/Eigen/src/IterativeSolvers/ConjugateGradient.h @@ -83,95 +83,8 @@ void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x, } -/** \brief A preconditioner based on the digonal entries - * - * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix. - * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: - * \code - * A.diagonal().asDiagonal() . x = b - * \endcode - * - * \tparam _Scalar the type of the scalar. - * - * This preconditioner is suitable for both selfadjoint and general problems. - * The diagonal entries are pre-inverted and stored into a dense vector. - * - * \note A variant that has yet to be implemented would attempt to preserve the norm of each column. - * - */ -template -class DiagonalPreconditioner -{ - typedef _Scalar Scalar; - typedef Matrix Vector; - typedef typename Vector::Index Index; - - public: - typedef Matrix MatrixType; - - DiagonalPreconditioner() : m_isInitialized(false) {} - - template - DiagonalPreconditioner(const MatrixType& mat) : m_invdiag(mat.cols()) - { - compute(mat); - } - - Index rows() const { return m_invdiag.size(); } - Index cols() const { return m_invdiag.size(); } - - template - DiagonalPreconditioner& compute(const MatrixType& mat) - { - m_invdiag.resize(mat.cols()); - for(int j=0; j - void _solve(const Rhs& b, Dest& x) const - { - x = m_invdiag.array() * b.array() ; - } - - template inline const internal::solve_retval - solve(const MatrixBase& b) const - { - eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized."); - eigen_assert(m_invdiag.size()==b.rows() - && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b"); - return internal::solve_retval(*this, b.derived()); - } - - protected: - Vector m_invdiag; - bool m_isInitialized; -}; - namespace internal { -template -struct solve_retval, Rhs> - : solve_retval_base, Rhs> -{ - typedef DiagonalPreconditioner<_MatrixType> Dec; - EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) - - template void evalTo(Dest& dst) const - { - dec()._solve(rhs(),dst); - } -}; - template class conjugate_gradient_solve_retval_with_guess; diff --git a/unsupported/test/cg.cpp b/unsupported/test/cg.cpp index aede84d58..bc421985e 100644 --- a/unsupported/test/cg.cpp +++ b/unsupported/test/cg.cpp @@ -57,10 +57,24 @@ template void cg(int size) VERIFY(ref_x.isApprox(x,test_precision()) && "ConjugateGradient: solve, full storage, upper, single dense rhs"); x = ConjugateGradient(m3_lo).solve(b); - VERIFY(ref_x.isApprox(x,test_precision()) && "SimplicialCholesky: solve, lower only, single dense rhs"); + VERIFY(ref_x.isApprox(x,test_precision()) && "ConjugateGradient: solve, lower only, single dense rhs"); x = ConjugateGradient(m3_up).solve(b); - VERIFY(ref_x.isApprox(x,test_precision()) && "SimplicialCholesky: solve, upper only, single dense rhs"); + VERIFY(ref_x.isApprox(x,test_precision()) && "ConjugateGradient: solve, upper only, single dense rhs"); + + + + x = ConjugateGradient().compute(m3).solve(b); + VERIFY(ref_x.isApprox(x,test_precision()) && "ConjugateGradient: solve, full storage, lower"); + + x = ConjugateGradient().compute(m3).solve(b); + VERIFY(ref_x.isApprox(x,test_precision()) && "ConjugateGradient: solve, full storage, upper, single dense rhs"); + + x = ConjugateGradient(m3_lo).solve(b); + VERIFY(ref_x.isApprox(x,test_precision()) && "ConjugateGradient: solve, lower only, single dense rhs"); + + x = ConjugateGradient(m3_up).solve(b); + VERIFY(ref_x.isApprox(x,test_precision()) && "ConjugateGradient: solve, upper only, single dense rhs"); } void test_cg()