Quaternion: fix compilation, cleaning

This commit is contained in:
Gael Guennebaud 2009-11-09 10:48:18 +01:00
parent aa0974286f
commit 670651e2e0

View File

@ -26,6 +26,149 @@
#ifndef EIGEN_QUATERNION_H
#define EIGEN_QUATERNION_H
/***************************************************************************
* Definition of QuaternionBase<Derived>
* The implementation is at the end of the file
***************************************************************************/
template<typename Other,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
struct ei_quaternionbase_assign_impl;
template<class Derived>
class QuaternionBase : public RotationBase<Derived, 3>
{
typedef RotationBase<Derived, 3> Base;
public:
using Base::operator*;
using Base::derived;
typedef typename ei_traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename ei_traits<Derived>::Coefficients Coefficients;
// typedef typename Matrix<Scalar,4,1> Coefficients;
/** the type of a 3D vector */
typedef Matrix<Scalar,3,1> Vector3;
/** the equivalent rotation matrix type */
typedef Matrix<Scalar,3,3> Matrix3;
/** the equivalent angle-axis type */
typedef AngleAxis<Scalar> AngleAxisType;
/** \returns the \c x coefficient */
inline Scalar x() const { return this->derived().coeffs().coeff(0); }
/** \returns the \c y coefficient */
inline Scalar y() const { return this->derived().coeffs().coeff(1); }
/** \returns the \c z coefficient */
inline Scalar z() const { return this->derived().coeffs().coeff(2); }
/** \returns the \c w coefficient */
inline Scalar w() const { return this->derived().coeffs().coeff(3); }
/** \returns a reference to the \c x coefficient */
inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
/** \returns a reference to the \c y coefficient */
inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
/** \returns a reference to the \c z coefficient */
inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
/** \returns a reference to the \c w coefficient */
inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
inline const VectorBlock<Coefficients,3> vec() const { return coeffs().template start<3>(); }
/** \returns a vector expression of the imaginary part (x,y,z) */
inline VectorBlock<Coefficients,3> vec() { return coeffs().template start<3>(); }
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */
inline const typename ei_traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
/** \returns a vector expression of the coefficients (x,y,z,w) */
inline typename ei_traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
template<class OtherDerived> Derived& operator=(const QuaternionBase<OtherDerived>& other);
Derived& operator=(const QuaternionBase& other)
{ return operator=<Derived>(other); }
Derived& operator=(const AngleAxisType& aa);
template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
/** \returns a quaternion representing an identity rotation
* \sa MatrixBase::Identity()
*/
inline static Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
/** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
*/
inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
/** \returns the squared norm of the quaternion's coefficients
* \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
*/
inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
/** \returns the norm of the quaternion's coefficients
* \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
*/
inline Scalar norm() const { return coeffs().norm(); }
/** Normalizes the quaternion \c *this
* \sa normalized(), MatrixBase::normalize() */
inline void normalize() { coeffs().normalize(); }
/** \returns a normalized copy of \c *this
* \sa normalize(), MatrixBase::normalized() */
inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
/** \returns the dot product of \c *this and \a other
* Geometrically speaking, the dot product of two unit quaternions
* corresponds to the cosine of half the angle between the two rotations.
* \sa angularDistance()
*/
template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
template<class OtherDerived> inline Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
Matrix3 toRotationMatrix() const;
template<typename Derived1, typename Derived2>
Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
template<class OtherDerived> inline Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
template<class OtherDerived> inline Derived& operator*= (const QuaternionBase<OtherDerived>& q);
Quaternion<Scalar> inverse() const;
Quaternion<Scalar> conjugate() const;
template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const;
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
template<class OtherDerived>
bool isApprox(const QuaternionBase<OtherDerived>& other, RealScalar prec = precision<Scalar>()) const
{ return coeffs().isApprox(other.coeffs(), prec); }
Vector3 _transformVector(Vector3 v) const;
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename ei_cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
{
return typename ei_cast_return_type<Derived,Quaternion<NewScalarType> >::type(
coeffs().template cast<NewScalarType>());
}
};
/***************************************************************************
* Definition/implementation of Quaternion<Scalar>
***************************************************************************/
/** \geometry_module \ingroup Geometry_Module
*
* \class Quaternion
@ -48,152 +191,13 @@
* \sa class AngleAxis, class Transform
*/
template<typename Other,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
struct ei_quaternionbase_assign_impl;
template<typename Scalar> class Quaternion; // [XXX] => remove when Quaternion becomes Quaternion
template<typename Derived>
struct ei_traits<QuaternionBase<Derived> >
{
typedef typename ei_traits<Derived>::Scalar Scalar;
enum {
PacketAccess = ei_traits<Derived>::PacketAccess
};
};
template<class Derived>
class QuaternionBase : public RotationBase<Derived, 3>
{
typedef RotationBase<Derived, 3> Base;
public:
using Base::operator*;
typedef typename ei_traits<QuaternionBase<Derived> >::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
// typedef typename Matrix<Scalar,4,1> Coefficients;
/** the type of a 3D vector */
typedef Matrix<Scalar,3,1> Vector3;
/** the equivalent rotation matrix type */
typedef Matrix<Scalar,3,3> Matrix3;
/** the equivalent angle-axis type */
typedef AngleAxis<Scalar> AngleAxisType;
/** \returns the \c x coefficient */
inline Scalar x() const { return this->derived().coeffs().coeff(0); }
/** \returns the \c y coefficient */
inline Scalar y() const { return this->derived().coeffs().coeff(1); }
/** \returns the \c z coefficient */
inline Scalar z() const { return this->derived().coeffs().coeff(2); }
/** \returns the \c w coefficient */
inline Scalar w() const { return this->derived().coeffs().coeff(3); }
/** \returns a reference to the \c x coefficient */
inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
/** \returns a reference to the \c y coefficient */
inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
/** \returns a reference to the \c z coefficient */
inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
/** \returns a reference to the \c w coefficient */
inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
inline const VectorBlock<typename ei_traits<Derived>::Coefficients,3> vec() const { return this->derived().coeffs().template start<3>(); }
/** \returns a vector expression of the imaginary part (x,y,z) */
inline VectorBlock<typename ei_traits<Derived>::Coefficients,3> vec() { return this->derived().coeffs().template start<3>(); }
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */
inline const typename ei_traits<Derived>::Coefficients& coeffs() const { return this->derived().coeffs(); }
/** \returns a vector expression of the coefficients (x,y,z,w) */
inline typename ei_traits<Derived>::Coefficients& coeffs() { return this->derived().coeffs(); }
template<class OtherDerived> QuaternionBase& operator=(const QuaternionBase<OtherDerived>& other);
QuaternionBase& operator=(const AngleAxisType& aa);
template<class OtherDerived>
QuaternionBase& operator=(const MatrixBase<OtherDerived>& m);
/** \returns a quaternion representing an identity rotation
* \sa MatrixBase::Identity()
*/
inline static Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
/** \sa Quaternion2::Identity(), MatrixBase::setIdentity()
*/
inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
/** \returns the squared norm of the quaternion's coefficients
* \sa Quaternion2::norm(), MatrixBase::squaredNorm()
*/
inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
/** \returns the norm of the quaternion's coefficients
* \sa Quaternion2::squaredNorm(), MatrixBase::norm()
*/
inline Scalar norm() const { return coeffs().norm(); }
/** Normalizes the quaternion \c *this
* \sa normalized(), MatrixBase::normalize() */
inline void normalize() { coeffs().normalize(); }
/** \returns a normalized version of \c *this
* \sa normalize(), MatrixBase::normalized() */
inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
/** \returns the dot product of \c *this and \a other
* Geometrically speaking, the dot product of two unit quaternions
* corresponds to the cosine of half the angle between the two rotations.
* \sa angularDistance()
*/
template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
template<class OtherDerived> inline Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
Matrix3 toRotationMatrix(void) const;
template<typename Derived1, typename Derived2>
QuaternionBase& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
template<class OtherDerived> inline Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
template<class OtherDerived> inline QuaternionBase& operator*= (const QuaternionBase<OtherDerived>& q);
Quaternion<Scalar> inverse(void) const;
Quaternion<Scalar> conjugate(void) const;
template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const;
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const QuaternionBase& other, RealScalar prec = precision<Scalar>()) const
{ return coeffs().isApprox(other.coeffs(), prec); }
Vector3 _transformVector(Vector3 v) const;
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename ei_cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
{
return typename ei_cast_return_type<Derived,Quaternion<NewScalarType> >::type(
coeffs().template cast<NewScalarType>());
}
};
template<typename _Scalar>
struct ei_traits<Quaternion<_Scalar> >
{
typedef _Scalar Scalar;
typedef Matrix<_Scalar,4,1> Coefficients;
enum{
PacketAccess = Aligned
PacketAccess = Aligned
};
};
@ -250,16 +254,29 @@ protected:
Coefficients m_coeffs;
};
/* ########### Map<Quaternion> */
/** \ingroup Geometry_Module
* single precision quaternion type */
typedef Quaternion<float> Quaternionf;
/** \ingroup Geometry_Module
* double precision quaternion type */
typedef Quaternion<double> Quaterniond;
/***************************************************************************
* Specialization of Map<Quaternion<Scalar>>
***************************************************************************/
/** \class Map<Quaternion>
* \nonstableyet
*
* \brief Expression of a quaternion
* \brief Expression of a quaternion from a memory buffer
*
* \param Scalar the type of the vector of diagonal coefficients
* \param _Scalar the type of the Quaternion coefficients
* \param PacketAccess see class Map
*
* \sa class Quaternion, class QuaternionBase
* This is a specialization of class Map for Quaternion. This class allows to view
* a 4 scalar memory buffer as an Eigen's Quaternion object.
*
* \sa class Map, class Quaternion, class QuaternionBase
*/
template<typename _Scalar, int _PacketAccess>
struct ei_traits<Map<Quaternion<_Scalar>, _PacketAccess> >:
@ -273,15 +290,23 @@ ei_traits<Quaternion<_Scalar> >
};
template<typename _Scalar, int PacketAccess>
class Map<Quaternion<_Scalar>, PacketAccess > : public QuaternionBase<Map<Quaternion<_Scalar>, PacketAccess> >, ei_no_assignment_operator {
class Map<Quaternion<_Scalar>, PacketAccess >
: public QuaternionBase<Map<Quaternion<_Scalar>, PacketAccess> >,
ei_no_assignment_operator
{
public:
typedef _Scalar Scalar;
typedef typename ei_traits<Map>::Coefficients Coefficients;
typedef typename ei_traits<Map<Quaternion<Scalar>, PacketAccess> >::Coefficients Coefficients;
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
*
* The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
* \code *coeffs == {x, y, z, w} \endcode
*
* If the template paramter PacketAccess is set to Aligned, then the pointer coeffs must be aligned. */
inline Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
inline Map<Quaternion<Scalar>, PacketAccess >(const Scalar* coeffs) : m_coeffs(coeffs) {}
inline Coefficients& coeffs() { return m_coeffs;}
inline const Coefficients& coeffs() const { return m_coeffs;}
@ -289,15 +314,20 @@ class Map<Quaternion<_Scalar>, PacketAccess > : public QuaternionBase<Map<Quater
Coefficients m_coeffs;
};
typedef Map<Quaternion<double> > QuaternionMapd;
typedef Map<Quaternion<float> > QuaternionMapf;
typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
typedef Map<Quaternion<double> > QuaternionMapd;
typedef Map<Quaternion<float> > QuaternionMapf;
typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
/***************************************************************************
* Implementation of QuaternionBase methods
***************************************************************************/
// Generic Quaternion * Quaternion product
template<int Arch, class Derived, class OtherDerived, typename Scalar, int PacketAccess> struct ei_quat_product
// This product can be specialized for a given architecture via the Arch template argument.
template<int Arch, class Derived1, class Derived2, typename Scalar, int PacketAccess> struct ei_quat_product
{
inline static Quaternion<Scalar> run(const QuaternionBase<Derived>& a, const QuaternionBase<OtherDerived>& b){
inline static Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
return Quaternion<Scalar>
(
a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
@ -311,21 +341,22 @@ template<int Arch, class Derived, class OtherDerived, typename Scalar, int Packe
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
template <class Derived>
template <class OtherDerived>
inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
inline Quaternion<typename ei_traits<Derived>::Scalar>
QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT((ei_is_same_type<typename Derived::Scalar, typename OtherDerived::Scalar>::ret),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
return ei_quat_product<EiArch, Derived, OtherDerived,
typename ei_traits<Derived>::Scalar,
ei_traits<Derived>::PacketAccess && ei_traits<OtherDerived>::PacketAccess>::run(*this, other);
return ei_quat_product<EiArch, Derived, OtherDerived,
typename ei_traits<Derived>::Scalar,
ei_traits<Derived>::PacketAccess && ei_traits<OtherDerived>::PacketAccess>::run(*this, other);
}
/** \sa operator*(Quaternion) */
template <class Derived>
template <class OtherDerived>
inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
inline Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
{
return (*this = *this * other);
return (derived() = derived() * other.derived());
}
/** Rotation of a vector by a quaternion.
@ -350,21 +381,21 @@ QuaternionBase<Derived>::_transformVector(Vector3 v) const
template<class Derived>
template<class OtherDerived>
inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
inline Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
{
coeffs() = other.coeffs();
return *this;
return derived();
}
/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
*/
template<class Derived>
inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
inline Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
{
Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
this->w() = ei_cos(ha);
this->vec() = ei_sin(ha) * aa.axis();
return *this;
return derived();
}
/** Set \c *this from the expression \a xpr:
@ -375,12 +406,12 @@ inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const AngleAx
template<class Derived>
template<class MatrixDerived>
inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
{
EIGEN_STATIC_ASSERT((ei_is_same_type<typename Derived::Scalar, typename MatrixDerived::Scalar>::ret),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
ei_quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
return *this;
return derived();
}
/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
@ -434,7 +465,7 @@ QuaternionBase<Derived>::toRotationMatrix(void) const
*/
template<class Derived>
template<typename Derived1, typename Derived2>
inline QuaternionBase<Derived>& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
Vector3 v0 = a.normalized();
Vector3 v1 = b.normalized();
@ -458,7 +489,7 @@ inline QuaternionBase<Derived>& QuaternionBase<Derived>::setFromTwoVectors(const
Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
this->w() = ei_sqrt(w2);
this->vec() = axis * ei_sqrt(Scalar(1) - w2);
return *this;
return derived();
}
Vector3 axis = v0.cross(v1);
Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2));
@ -466,17 +497,17 @@ inline QuaternionBase<Derived>& QuaternionBase<Derived>::setFromTwoVectors(const
this->vec() = axis * invs;
this->w() = s * Scalar(0.5);
return *this;
return derived();
}
/** \returns the multiplicative inverse of \c *this
* Note that in most cases, i.e., if you simply want the opposite rotation,
* and/or the quaternion is normalized, then it is enough to use the conjugate.
*
* \sa Quaternion2::conjugate()
* \sa QuaternionBase::conjugate()
*/
template <class Derived>
inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> QuaternionBase<Derived>::inverse() const
inline Quaternion<typename ei_traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
{
// FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
Scalar n2 = this->squaredNorm();
@ -485,7 +516,7 @@ inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> Quaterni
else
{
// return an invalid result to flag the error
return Quaternion<Scalar>(ei_traits<Derived>::Coefficients::Zero());
return Quaternion<Scalar>(Coefficients::Zero());
}
}
@ -496,7 +527,8 @@ inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> Quaterni
* \sa Quaternion2::inverse()
*/
template <class Derived>
inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> QuaternionBase<Derived>::conjugate() const
inline Quaternion<typename ei_traits<Derived>::Scalar>
QuaternionBase<Derived>::conjugate() const
{
return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
}
@ -506,11 +538,12 @@ inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> Quaterni
*/
template <class Derived>
template <class OtherDerived>
inline typename ei_traits<QuaternionBase<Derived> >::Scalar QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
inline typename ei_traits<Derived>::Scalar
QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
{
double d = ei_abs(this->dot(other));
if (d>=1.0)
return 0;
return Scalar(0);
return Scalar(2) * std::acos(d);
}
@ -519,13 +552,14 @@ inline typename ei_traits<QuaternionBase<Derived> >::Scalar QuaternionBase<Deriv
*/
template <class Derived>
template <class OtherDerived>
Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const
Quaternion<typename ei_traits<Derived>::Scalar>
QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const
{
static const Scalar one = Scalar(1) - precision<Scalar>();
Scalar d = this->dot(other);
Scalar absD = ei_abs(d);
if (absD>=one)
return Quaternion<Scalar>(*this);
return Quaternion<Scalar>(derived());
// theta is the angle between the 2 quaternions
Scalar theta = std::acos(absD);
@ -549,7 +583,7 @@ struct ei_quaternionbase_assign_impl<Other,3,3>
// This algorithm comes from "Quaternion Calculus and Fast Animation",
// Ken Shoemake, 1987 SIGGRAPH course notes
Scalar t = mat.trace();
if (t > 0)
if (t > Scalar(0))
{
t = ei_sqrt(t + Scalar(1.0));
q.w() = Scalar(0.5)*t;