mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-03 10:14:04 +08:00
Eigenvalues module: Implement setMaxIterations() methods.
This commit is contained in:
parent
6f54269829
commit
696b2f999f
@ -208,27 +208,7 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
* Example: \include ComplexEigenSolver_compute.cpp
|
||||
* Output: \verbinclude ComplexEigenSolver_compute.out
|
||||
*/
|
||||
ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true)
|
||||
{
|
||||
return computeInternal(matrix, computeEigenvectors, false, 0);
|
||||
}
|
||||
|
||||
/** \brief Computes eigendecomposition with specified maximum number of iterations.
|
||||
*
|
||||
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
|
||||
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
||||
* eigenvalues are computed; if false, only the eigenvalues are
|
||||
* computed.
|
||||
* \param[in] maxIter Maximum number of iterations.
|
||||
* \returns Reference to \c *this
|
||||
*
|
||||
* This method provides the same functionality as compute(const MatrixType&, bool) but it also allows the
|
||||
* user to specify the maximum number of iterations to be used when computing the Schur decomposition.
|
||||
*/
|
||||
ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors, Index maxIter)
|
||||
{
|
||||
return computeInternal(matrix, computeEigenvectors, true, maxIter);
|
||||
}
|
||||
ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
@ -240,6 +220,19 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
return m_schur.info();
|
||||
}
|
||||
|
||||
/** \brief Sets the maximum number of iterations allowed. */
|
||||
ComplexEigenSolver& setMaxIterations(Index maxIters)
|
||||
{
|
||||
m_schur.setMaxIterations(maxIters);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \brief Returns the maximum number of iterations. */
|
||||
Index getMaxIterations()
|
||||
{
|
||||
return m_schur.getMaxIterations();
|
||||
}
|
||||
|
||||
protected:
|
||||
EigenvectorType m_eivec;
|
||||
EigenvalueType m_eivalues;
|
||||
@ -251,26 +244,19 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
private:
|
||||
void doComputeEigenvectors(RealScalar matrixnorm);
|
||||
void sortEigenvalues(bool computeEigenvectors);
|
||||
ComplexEigenSolver& computeInternal(const MatrixType& matrix, bool computeEigenvectors,
|
||||
bool maxIterSpecified, Index maxIter);
|
||||
|
||||
};
|
||||
|
||||
|
||||
template<typename MatrixType>
|
||||
ComplexEigenSolver<MatrixType>&
|
||||
ComplexEigenSolver<MatrixType>::computeInternal(const MatrixType& matrix, bool computeEigenvectors,
|
||||
bool maxIterSpecified, Index maxIter)
|
||||
ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
|
||||
{
|
||||
// this code is inspired from Jampack
|
||||
assert(matrix.cols() == matrix.rows());
|
||||
|
||||
// Do a complex Schur decomposition, A = U T U^*
|
||||
// The eigenvalues are on the diagonal of T.
|
||||
if (maxIterSpecified)
|
||||
m_schur.compute(matrix, computeEigenvectors, maxIter);
|
||||
else
|
||||
m_schur.compute(matrix, computeEigenvectors);
|
||||
m_schur.compute(matrix, computeEigenvectors);
|
||||
|
||||
if(m_schur.info() == Success)
|
||||
{
|
||||
|
@ -96,7 +96,8 @@ template<typename _MatrixType> class ComplexSchur
|
||||
m_matU(size,size),
|
||||
m_hess(size),
|
||||
m_isInitialized(false),
|
||||
m_matUisUptodate(false)
|
||||
m_matUisUptodate(false),
|
||||
m_maxIters(-1)
|
||||
{}
|
||||
|
||||
/** \brief Constructor; computes Schur decomposition of given matrix.
|
||||
@ -109,11 +110,12 @@ template<typename _MatrixType> class ComplexSchur
|
||||
* \sa matrixT() and matrixU() for examples.
|
||||
*/
|
||||
ComplexSchur(const MatrixType& matrix, bool computeU = true)
|
||||
: m_matT(matrix.rows(),matrix.cols()),
|
||||
m_matU(matrix.rows(),matrix.cols()),
|
||||
m_hess(matrix.rows()),
|
||||
m_isInitialized(false),
|
||||
m_matUisUptodate(false)
|
||||
: m_matT(matrix.rows(),matrix.cols()),
|
||||
m_matU(matrix.rows(),matrix.cols()),
|
||||
m_hess(matrix.rows()),
|
||||
m_isInitialized(false),
|
||||
m_matUisUptodate(false),
|
||||
m_maxIters(-1)
|
||||
{
|
||||
compute(matrix, computeU);
|
||||
}
|
||||
@ -184,24 +186,7 @@ template<typename _MatrixType> class ComplexSchur
|
||||
*
|
||||
* \sa compute(const MatrixType&, bool, Index)
|
||||
*/
|
||||
ComplexSchur& compute(const MatrixType& matrix, bool computeU = true)
|
||||
{
|
||||
return compute(matrix, computeU, m_maxIterations * matrix.rows());
|
||||
}
|
||||
|
||||
/** \brief Computes Schur decomposition with specified maximum number of iterations.
|
||||
*
|
||||
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
||||
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
|
||||
* \param[in] maxIter Maximum number of iterations.
|
||||
*
|
||||
* \returns Reference to \c *this
|
||||
*
|
||||
* This method provides the same functionality as compute(const MatrixType&, bool) but it also allows the
|
||||
* user to specify the maximum number of QR iterations to be used. The maximum number of iterations for
|
||||
* compute(const MatrixType&, bool) is #m_maxIterations times the size of the matrix.
|
||||
*/
|
||||
ComplexSchur& compute(const MatrixType& matrix, bool computeU, Index maxIter);
|
||||
ComplexSchur& compute(const MatrixType& matrix, bool computeU = true);
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
@ -213,12 +198,29 @@ template<typename _MatrixType> class ComplexSchur
|
||||
return m_info;
|
||||
}
|
||||
|
||||
/** \brief Maximum number of iterations.
|
||||
/** \brief Sets the maximum number of iterations allowed.
|
||||
*
|
||||
* If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
|
||||
* of the matrix.
|
||||
*/
|
||||
ComplexSchur& setMaxIterations(Index maxIters)
|
||||
{
|
||||
m_maxIters = maxIters;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \brief Returns the maximum number of iterations. */
|
||||
Index getMaxIterations()
|
||||
{
|
||||
return m_maxIters;
|
||||
}
|
||||
|
||||
/** \brief Maximum number of iterations per row.
|
||||
*
|
||||
* If not otherwise specified, the maximum number of iterations is this number times the size of the
|
||||
* matrix. It is currently set to 30.
|
||||
*/
|
||||
static const int m_maxIterations = 30;
|
||||
static const int m_maxIterationsPerRow = 30;
|
||||
|
||||
protected:
|
||||
ComplexMatrixType m_matT, m_matU;
|
||||
@ -226,11 +228,12 @@ template<typename _MatrixType> class ComplexSchur
|
||||
ComputationInfo m_info;
|
||||
bool m_isInitialized;
|
||||
bool m_matUisUptodate;
|
||||
Index m_maxIters;
|
||||
|
||||
private:
|
||||
bool subdiagonalEntryIsNeglegible(Index i);
|
||||
ComplexScalar computeShift(Index iu, Index iter);
|
||||
void reduceToTriangularForm(bool computeU, Index maxIter);
|
||||
void reduceToTriangularForm(bool computeU);
|
||||
friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
|
||||
};
|
||||
|
||||
@ -289,7 +292,7 @@ typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::compu
|
||||
|
||||
|
||||
template<typename MatrixType>
|
||||
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU, Index maxIter)
|
||||
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
|
||||
{
|
||||
m_matUisUptodate = false;
|
||||
eigen_assert(matrix.cols() == matrix.rows());
|
||||
@ -305,7 +308,7 @@ ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& ma
|
||||
}
|
||||
|
||||
internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU);
|
||||
reduceToTriangularForm(computeU, maxIter);
|
||||
reduceToTriangularForm(computeU);
|
||||
return *this;
|
||||
}
|
||||
|
||||
@ -348,8 +351,12 @@ struct complex_schur_reduce_to_hessenberg<MatrixType, false>
|
||||
|
||||
// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
|
||||
template<typename MatrixType>
|
||||
void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU, Index maxIter)
|
||||
void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
|
||||
{
|
||||
Index maxIters = m_maxIters;
|
||||
if (maxIters == -1)
|
||||
maxIters = m_maxIterationsPerRow * m_matT.rows();
|
||||
|
||||
// The matrix m_matT is divided in three parts.
|
||||
// Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
|
||||
// Rows il,...,iu is the part we are working on (the active submatrix).
|
||||
@ -375,7 +382,7 @@ void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU, Index maxIt
|
||||
// if we spent too many iterations, we give up
|
||||
iter++;
|
||||
totalIter++;
|
||||
if(totalIter > maxIter) break;
|
||||
if(totalIter > maxIters) break;
|
||||
|
||||
// find il, the top row of the active submatrix
|
||||
il = iu-1;
|
||||
@ -405,7 +412,7 @@ void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU, Index maxIt
|
||||
}
|
||||
}
|
||||
|
||||
if(totalIter <= maxIter)
|
||||
if(totalIter <= maxIters)
|
||||
m_info = Success;
|
||||
else
|
||||
m_info = NoConvergence;
|
||||
|
@ -273,27 +273,7 @@ template<typename _MatrixType> class EigenSolver
|
||||
* Example: \include EigenSolver_compute.cpp
|
||||
* Output: \verbinclude EigenSolver_compute.out
|
||||
*/
|
||||
EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true)
|
||||
{
|
||||
return computeInternal(matrix, computeEigenvectors, false, 0);
|
||||
}
|
||||
|
||||
/** \brief Computes eigendecomposition with specified maximum number of iterations.
|
||||
*
|
||||
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
|
||||
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
||||
* eigenvalues are computed; if false, only the eigenvalues are
|
||||
* computed.
|
||||
* \param[in] maxIter Maximum number of iterations.
|
||||
* \returns Reference to \c *this
|
||||
*
|
||||
* This method provides the same functionality as compute(const MatrixType&, bool) but it also allows the
|
||||
* user to specify the maximum number of iterations to be used when computing the Schur decomposition.
|
||||
*/
|
||||
EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors, Index maxIter)
|
||||
{
|
||||
return computeInternal(matrix, computeEigenvectors, true, maxIter);
|
||||
}
|
||||
EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
|
||||
|
||||
ComputationInfo info() const
|
||||
{
|
||||
@ -301,10 +281,21 @@ template<typename _MatrixType> class EigenSolver
|
||||
return m_realSchur.info();
|
||||
}
|
||||
|
||||
/** \brief Sets the maximum number of iterations allowed. */
|
||||
EigenSolver& setMaxIterations(Index maxIters)
|
||||
{
|
||||
m_realSchur.setMaxIterations(maxIters);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \brief Returns the maximum number of iterations. */
|
||||
Index getMaxIterations()
|
||||
{
|
||||
return m_realSchur.getMaxIterations();
|
||||
}
|
||||
|
||||
private:
|
||||
void doComputeEigenvectors();
|
||||
EigenSolver& computeInternal(const MatrixType& matrix, bool computeEigenvectors,
|
||||
bool maxIterSpecified, Index maxIter);
|
||||
|
||||
protected:
|
||||
MatrixType m_eivec;
|
||||
@ -371,16 +362,12 @@ typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eige
|
||||
|
||||
template<typename MatrixType>
|
||||
EigenSolver<MatrixType>&
|
||||
EigenSolver<MatrixType>::computeInternal(const MatrixType& matrix, bool computeEigenvectors,
|
||||
bool maxIterSpecified, Index maxIter)
|
||||
EigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
|
||||
{
|
||||
assert(matrix.cols() == matrix.rows());
|
||||
|
||||
// Reduce to real Schur form.
|
||||
if (maxIterSpecified)
|
||||
m_realSchur.compute(matrix, computeEigenvectors, maxIter);
|
||||
else
|
||||
m_realSchur.compute(matrix, computeEigenvectors);
|
||||
m_realSchur.compute(matrix, computeEigenvectors);
|
||||
|
||||
if (m_realSchur.info() == Success)
|
||||
{
|
||||
|
@ -86,7 +86,8 @@ template<typename _MatrixType> class RealSchur
|
||||
m_workspaceVector(size),
|
||||
m_hess(size),
|
||||
m_isInitialized(false),
|
||||
m_matUisUptodate(false)
|
||||
m_matUisUptodate(false),
|
||||
m_maxIters(-1)
|
||||
{ }
|
||||
|
||||
/** \brief Constructor; computes real Schur decomposition of given matrix.
|
||||
@ -105,7 +106,8 @@ template<typename _MatrixType> class RealSchur
|
||||
m_workspaceVector(matrix.rows()),
|
||||
m_hess(matrix.rows()),
|
||||
m_isInitialized(false),
|
||||
m_matUisUptodate(false)
|
||||
m_matUisUptodate(false),
|
||||
m_maxIters(-1)
|
||||
{
|
||||
compute(matrix, computeU);
|
||||
}
|
||||
@ -163,24 +165,7 @@ template<typename _MatrixType> class RealSchur
|
||||
*
|
||||
* \sa compute(const MatrixType&, bool, Index)
|
||||
*/
|
||||
RealSchur& compute(const MatrixType& matrix, bool computeU = true)
|
||||
{
|
||||
return compute(matrix, computeU, m_maxIterations * matrix.rows());
|
||||
}
|
||||
|
||||
/** \brief Computes Schur decomposition with specified maximum number of iterations.
|
||||
*
|
||||
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
||||
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
|
||||
* \param[in] maxIter Maximum number of iterations.
|
||||
*
|
||||
* \returns Reference to \c *this
|
||||
*
|
||||
* This method provides the same functionality as compute(const MatrixType&, bool) but it also allows the
|
||||
* user to specify the maximum number of QR iterations to be used. The maximum number of iterations for
|
||||
* compute(const MatrixType&, bool) is #m_maxIterations times the size of the matrix.
|
||||
*/
|
||||
RealSchur& compute(const MatrixType& matrix, bool computeU, Index maxIter);
|
||||
RealSchur& compute(const MatrixType& matrix, bool computeU = true);
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
@ -192,12 +177,29 @@ template<typename _MatrixType> class RealSchur
|
||||
return m_info;
|
||||
}
|
||||
|
||||
/** \brief Maximum number of iterations.
|
||||
/** \brief Sets the maximum number of iterations allowed.
|
||||
*
|
||||
* If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
|
||||
* of the matrix.
|
||||
*/
|
||||
RealSchur& setMaxIterations(Index maxIters)
|
||||
{
|
||||
m_maxIters = maxIters;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \brief Returns the maximum number of iterations. */
|
||||
Index getMaxIterations()
|
||||
{
|
||||
return m_maxIters;
|
||||
}
|
||||
|
||||
/** \brief Maximum number of iterations per row.
|
||||
*
|
||||
* If not otherwise specified, the maximum number of iterations is this number times the size of the
|
||||
* matrix. It is currently set to 40.
|
||||
*/
|
||||
static const int m_maxIterations = 40;
|
||||
static const int m_maxIterationsPerRow = 40;
|
||||
|
||||
private:
|
||||
|
||||
@ -208,6 +210,7 @@ template<typename _MatrixType> class RealSchur
|
||||
ComputationInfo m_info;
|
||||
bool m_isInitialized;
|
||||
bool m_matUisUptodate;
|
||||
Index m_maxIters;
|
||||
|
||||
typedef Matrix<Scalar,3,1> Vector3s;
|
||||
|
||||
@ -221,9 +224,12 @@ template<typename _MatrixType> class RealSchur
|
||||
|
||||
|
||||
template<typename MatrixType>
|
||||
RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU, Index maxIter)
|
||||
RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
|
||||
{
|
||||
assert(matrix.cols() == matrix.rows());
|
||||
Index maxIters = m_maxIters;
|
||||
if (maxIters == -1)
|
||||
maxIters = m_maxIterationsPerRow * matrix.rows();
|
||||
|
||||
// Step 1. Reduce to Hessenberg form
|
||||
m_hess.compute(matrix);
|
||||
@ -273,14 +279,14 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix,
|
||||
computeShift(iu, iter, exshift, shiftInfo);
|
||||
iter = iter + 1;
|
||||
totalIter = totalIter + 1;
|
||||
if (totalIter > maxIter) break;
|
||||
if (totalIter > maxIters) break;
|
||||
Index im;
|
||||
initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
|
||||
performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
|
||||
}
|
||||
}
|
||||
}
|
||||
if(totalIter <= maxIter)
|
||||
if(totalIter <= maxIters)
|
||||
m_info = Success;
|
||||
else
|
||||
m_info = NoConvergence;
|
||||
|
@ -60,13 +60,14 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||||
verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues());
|
||||
|
||||
ComplexEigenSolver<MatrixType> ei2;
|
||||
ei2.compute(a, true, ComplexSchur<MatrixType>::m_maxIterations * rows);
|
||||
ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
|
||||
VERIFY_IS_EQUAL(ei2.info(), Success);
|
||||
VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
|
||||
VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
|
||||
if (rows > 2) {
|
||||
ei2.compute(a, true, 1);
|
||||
ei2.setMaxIterations(1).compute(a);
|
||||
VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
|
||||
VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
|
||||
}
|
||||
|
||||
ComplexEigenSolver<MatrixType> eiNoEivecs(a, false);
|
||||
|
@ -46,13 +46,14 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||||
VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues());
|
||||
|
||||
EigenSolver<MatrixType> ei2;
|
||||
ei2.compute(a, true, RealSchur<MatrixType>::m_maxIterations * rows);
|
||||
ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
|
||||
VERIFY_IS_EQUAL(ei2.info(), Success);
|
||||
VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
|
||||
VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
|
||||
if (rows > 2) {
|
||||
ei2.compute(a, true, 1);
|
||||
ei2.setMaxIterations(1).compute(a);
|
||||
VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
|
||||
VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
|
||||
}
|
||||
|
||||
EigenSolver<MatrixType> eiNoEivecs(a, false);
|
||||
|
@ -49,16 +49,17 @@ template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTim
|
||||
|
||||
// Test maximum number of iterations
|
||||
ComplexSchur<MatrixType> cs3;
|
||||
cs3.compute(A, true, ComplexSchur<MatrixType>::m_maxIterations * size);
|
||||
cs3.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A);
|
||||
VERIFY_IS_EQUAL(cs3.info(), Success);
|
||||
VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT());
|
||||
VERIFY_IS_EQUAL(cs3.matrixU(), cs1.matrixU());
|
||||
cs3.compute(A, true, 1);
|
||||
cs3.setMaxIterations(1).compute(A);
|
||||
VERIFY_IS_EQUAL(cs3.info(), size > 1 ? NoConvergence : Success);
|
||||
VERIFY_IS_EQUAL(cs3.getMaxIterations(), 1);
|
||||
|
||||
MatrixType Atriangular = A;
|
||||
Atriangular.template triangularView<StrictlyLower>().setZero();
|
||||
cs3.compute(Atriangular, true, 1); // triangular matrices do not need any iterations
|
||||
cs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations
|
||||
VERIFY_IS_EQUAL(cs3.info(), Success);
|
||||
VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>());
|
||||
VERIFY_IS_EQUAL(cs3.matrixU(), ComplexMatrixType::Identity(size, size));
|
||||
|
@ -68,18 +68,19 @@ template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTim
|
||||
|
||||
// Test maximum number of iterations
|
||||
RealSchur<MatrixType> rs3;
|
||||
rs3.compute(A, true, RealSchur<MatrixType>::m_maxIterations * size);
|
||||
rs3.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A);
|
||||
VERIFY_IS_EQUAL(rs3.info(), Success);
|
||||
VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT());
|
||||
VERIFY_IS_EQUAL(rs3.matrixU(), rs1.matrixU());
|
||||
if (size > 2) {
|
||||
rs3.compute(A, true, 1);
|
||||
rs3.setMaxIterations(1).compute(A);
|
||||
VERIFY_IS_EQUAL(rs3.info(), NoConvergence);
|
||||
VERIFY_IS_EQUAL(rs3.getMaxIterations(), 1);
|
||||
}
|
||||
|
||||
MatrixType Atriangular = A;
|
||||
Atriangular.template triangularView<StrictlyLower>().setZero();
|
||||
rs3.compute(Atriangular, true, 1); // triangular matrices do not need any iterations
|
||||
rs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations
|
||||
VERIFY_IS_EQUAL(rs3.info(), Success);
|
||||
VERIFY_IS_EQUAL(rs3.matrixT(), Atriangular);
|
||||
VERIFY_IS_EQUAL(rs3.matrixU(), MatrixType::Identity(size, size));
|
||||
|
Loading…
x
Reference in New Issue
Block a user