Add Sparse Subset of Matrix Inverse

This commit is contained in:
Julian Kent 2022-07-28 18:04:35 +00:00 committed by Rasmus Munk Larsen
parent 34780d8bd1
commit 69714ff613
4 changed files with 329 additions and 0 deletions

View File

@ -816,6 +816,31 @@ struct SparseLUMatrixLReturnType : internal::no_assignment_operator
m_mapL.template solveTransposedInPlace<Conjugate>(X);
}
SparseMatrix<Scalar, ColMajor, Index> toSparse() const {
ArrayXi colCount = ArrayXi::Ones(cols());
for (Index i = 0; i < cols(); i++) {
typename MappedSupernodalType::InnerIterator iter(m_mapL, i);
for (; iter; ++iter) {
if (iter.row() > iter.col()) {
colCount(iter.col())++;
}
}
}
SparseMatrix<Scalar, ColMajor, Index> sL(rows(), cols());
sL.reserve(colCount);
for (Index i = 0; i < cols(); i++) {
sL.insert(i, i) = 1.0;
typename MappedSupernodalType::InnerIterator iter(m_mapL, i);
for (; iter; ++iter) {
if (iter.row() > iter.col()) {
sL.insert(iter.row(), iter.col()) = iter.value();
}
}
}
sL.makeCompressed();
return sL;
}
const MappedSupernodalType& m_mapL;
};
@ -915,6 +940,32 @@ struct SparseLUMatrixUReturnType : internal::no_assignment_operator
}// End For U-solve
}
SparseMatrix<Scalar, RowMajor, Index> toSparse() {
ArrayXi rowCount = ArrayXi::Zero(rows());
for (Index i = 0; i < cols(); i++) {
typename MatrixLType::InnerIterator iter(m_mapL, i);
for (; iter; ++iter) {
if (iter.row() <= iter.col()) {
rowCount(iter.row())++;
}
}
}
SparseMatrix<Scalar, RowMajor, Index> sU(rows(), cols());
sU.reserve(rowCount);
for (Index i = 0; i < cols(); i++) {
typename MatrixLType::InnerIterator iter(m_mapL, i);
for (; iter; ++iter) {
if (iter.row() <= iter.col()) {
sU.insert(iter.row(), iter.col()) = iter.value();
}
}
}
sU.makeCompressed();
const SparseMatrix<Scalar, RowMajor, Index> u = m_mapU; // convert to RowMajor
sU += u;
return sU;
}
const MatrixLType& m_mapL;
const MatrixUType& m_mapU;

View File

@ -33,6 +33,7 @@
*
* This module contains some experimental features extending the sparse module:
* - A RandomSetter which is a wrapper object allowing to set/update a sparse matrix with random access.
* - A SparseInverse which calculates a sparse subset of the inverse of a sparse matrix corresponding to nonzeros of the input
* - MatrixMarket format(https://math.nist.gov/MatrixMarket/formats.html) readers and writers for sparse and dense matrices.
*
* \code
@ -42,6 +43,7 @@
#include "src/SparseExtra/RandomSetter.h"
#include "src/SparseExtra/SparseInverse.h"
#include "src/SparseExtra/MarketIO.h"

View File

@ -0,0 +1,231 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2022 Julian Kent <jkflying@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSEINVERSE_H
#define EIGEN_SPARSEINVERSE_H
#include "./InternalHeaderCheck.h"
#include "../../../../Eigen/Sparse"
#include "../../../../Eigen/SparseLU"
namespace Eigen {
/**
* @brief Kahan algorithm based accumulator
*
* The Kahan sum algorithm guarantees to bound the error from floating point
* accumulation to a fixed value, regardless of the number of accumulations
* performed. Naive accumulation accumulates errors O(N), and pairwise O(logN).
* However pairwise also requires O(logN) memory while Kahan summation requires
* O(1) memory, but 4x the operations / latency.
*
* NB! Do not enable associative math optimizations, they may cause the Kahan
* summation to be optimized out leaving you with naive summation again.
*
*/
template <typename Scalar>
class KahanSum {
// Straighforward Kahan summation for accurate accumulation of a sum of numbers
Scalar _sum{};
Scalar _correction{};
public:
Scalar value() { return _sum; }
void operator+=(Scalar increment) {
const Scalar correctedIncrement = increment + _correction;
const Scalar previousSum = _sum;
_sum += correctedIncrement;
_correction = correctedIncrement - (_sum - previousSum);
}
};
template <typename Scalar, Index Width = 16>
class FABSum {
// https://epubs.siam.org/doi/pdf/10.1137/19M1257780
// Fast and Accurate Blocked Summation
// Uses naive summation for the fast sum, and Kahan summation for the accurate sum
// Theoretically SIMD sum could be changed to a tree sum which would improve accuracy
// over naive summation
KahanSum<Scalar> _totalSum;
Matrix<Scalar, Width, 1> _block;
Index _blockUsed{};
public:
Scalar value() { return _block.topRows(_blockUsed).sum() + _totalSum.value(); }
void operator+=(Scalar increment) {
_block(_blockUsed++, 0) = increment;
if (_blockUsed == Width) {
_totalSum += _block.sum();
_blockUsed = 0;
}
}
};
/**
* @brief computes an accurate dot product on two sparse vectors
*
* Uses an accurate summation algorithm for the accumulator in order to
* compute an accurate dot product for two sparse vectors.
*
*/
template <typename Derived, typename OtherDerived>
typename Derived::Scalar accurateDot(const SparseMatrixBase<Derived>& A, const SparseMatrixBase<OtherDerived>& other) {
typedef typename Derived::Scalar Scalar;
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived, OtherDerived)
static_assert(internal::is_same<Scalar, typename OtherDerived::Scalar>::value, "mismatched types");
internal::evaluator<Derived> thisEval(A.derived());
typename Derived::ReverseInnerIterator i(thisEval, 0);
internal::evaluator<OtherDerived> otherEval(other.derived());
typename OtherDerived::ReverseInnerIterator j(otherEval, 0);
FABSum<Scalar> res;
while (i && j) {
if (i.index() == j.index()) {
res += numext::conj(i.value()) * j.value();
--i;
--j;
} else if (i.index() > j.index())
--i;
else
--j;
}
return res.value();
}
/**
* @brief calculate sparse subset of inverse of sparse matrix
*
* This class returns a sparse subset of the inverse of the input matrix.
* The nonzeros correspond to the nonzeros of the input, plus any additional
* elements required due to fill-in of the internal LU factorization. This is
* is minimized via a applying a fill-reducing permutation as part of the LU
* factorization.
*
* If there are specific entries of the input matrix which you need inverse
* values for, which are zero for the input, you need to insert entries into
* the input sparse matrix for them to be calculated.
*
* Due to the sensitive nature of matrix inversion, particularly on large
* matrices which are made possible via sparsity, high accuracy dot products
* based on Kahan summation are used to reduce numerical error. If you still
* encounter numerical errors you may with to equilibrate your matrix before
* calculating the inverse, as well as making sure it is actually full rank.
*/
template <typename Scalar>
class SparseInverse {
public:
typedef SparseMatrix<Scalar, ColMajor> MatrixType;
typedef SparseMatrix<Scalar, RowMajor> RowMatrixType;
SparseInverse() {}
/**
* @brief This Constructor is for if you already have a factored SparseLU and would like to use it to calculate a
* sparse inverse.
*
* Just call this constructor with your already factored SparseLU class and you can directly call the .inverse()
* method to get the result.
*/
SparseInverse(const SparseLU<MatrixType>& slu) { _result = computeInverse(slu); }
/**
* @brief Calculate the sparse inverse from a given sparse input
*/
SparseInverse& compute(const SparseMatrix<Scalar>& A) {
SparseLU<MatrixType> slu;
slu.compute(A);
_result = computeInverse(slu);
return *this;
}
/**
* @brief return the already-calculated sparse inverse, or a 0x0 matrix if it could not be computed
*/
const MatrixType& inverse() const { return _result; }
/**
* @brief Internal function to calculate the sparse inverse in a functional way
* @return A sparse inverse representation, or, if the decomposition didn't complete, a 0x0 matrix.
*/
static MatrixType computeInverse(const SparseLU<MatrixType>& slu) {
if (slu.info() != Success) {
return MatrixType(0, 0);
}
// Extract from SparseLU and decompose into L, inverse D and U terms
Matrix<Scalar, Dynamic, 1> invD;
RowMatrixType Upper;
{
RowMatrixType DU = slu.matrixU().toSparse();
invD = DU.diagonal().cwiseInverse();
Upper = (invD.asDiagonal() * DU).template triangularView<StrictlyUpper>();
}
MatrixType Lower = slu.matrixL().toSparse().template triangularView<StrictlyLower>();
// Compute the inverse and reapply the permutation matrix from the LU decomposition
return slu.colsPermutation().transpose() * computeInverse(Upper, invD, Lower) * slu.rowsPermutation();
}
/**
* @brief Internal function to calculate the inverse from strictly upper, diagonal and strictly lower components
*/
static MatrixType computeInverse(const RowMatrixType& Upper, const Matrix<Scalar, Dynamic, 1>& inverseDiagonal,
const MatrixType& Lower) {
// Calculate the 'minimal set', which is the nonzeros of (L+U).transpose()
// It could be zeroed, but we will overwrite all non-zeros anyways.
MatrixType colInv = Lower.transpose().template triangularView<UnitUpper>();
colInv += Upper.transpose();
// We also need rowmajor representation in order to do efficient row-wise dot products
RowMatrixType rowInv = Upper.transpose().template triangularView<UnitLower>();
rowInv += Lower.transpose();
// Use the Takahashi algorithm to build the supporting elements of the inverse
// upwards and to the left, from the bottom right element, 1 col/row at a time
for (Index recurseLevel = Upper.cols() - 1; recurseLevel >= 0; recurseLevel--) {
const auto& col = Lower.col(recurseLevel);
const auto& row = Upper.row(recurseLevel);
// Calculate the inverse values for the nonzeros in this column
typename MatrixType::ReverseInnerIterator colIter(colInv, recurseLevel);
for (; recurseLevel < colIter.index(); --colIter) {
const Scalar element = -accurateDot(col, rowInv.row(colIter.index()));
colIter.valueRef() = element;
rowInv.coeffRef(colIter.index(), recurseLevel) = element;
}
// Calculate the inverse values for the nonzeros in this row
typename RowMatrixType::ReverseInnerIterator rowIter(rowInv, recurseLevel);
for (; recurseLevel < rowIter.index(); --rowIter) {
const Scalar element = -accurateDot(row, colInv.col(rowIter.index()));
rowIter.valueRef() = element;
colInv.coeffRef(recurseLevel, rowIter.index()) = element;
}
// And finally the diagonal, which corresponds to both row and col iterator now
const Scalar diag = inverseDiagonal(recurseLevel) - accurateDot(row, colInv.col(recurseLevel));
rowIter.valueRef() = diag;
colIter.valueRef() = diag;
}
return colInv;
}
private:
MatrixType _result;
};
} // namespace Eigen
#endif

View File

@ -164,6 +164,49 @@ void check_marketio_dense()
VERIFY_IS_EQUAL(m1,m2);
}
template <typename Scalar>
void check_sparse_inverse() {
typedef SparseMatrix<Scalar> MatrixType;
typedef SparseMatrix<Scalar, RowMajor> RowMatrixType;
Matrix<Scalar, -1, -1> A;
A.resize(1000, 1000);
A.fill(0);
A.setIdentity();
A.col(0).array() += 1;
A.row(0).array() += 2;
A.col(2).array() += 3;
A.row(7).array() += 3;
A.col(9).array() += 3;
A.block(3, 4, 4, 2).array() += 9;
A.middleRows(10, 50).array() += 3;
A.middleCols(50, 50).array() += 40;
A.block(500, 300, 40, 20).array() += 10;
A.transposeInPlace();
Eigen::SparseLU<MatrixType> slu;
slu.compute(A.sparseView());
Matrix<Scalar, -1, -1> Id(A.rows(), A.cols());
Id.setIdentity();
Matrix<Scalar, -1, -1> inv = slu.solve(Id);
const MatrixType sparseInv = Eigen::SparseInverse<Scalar>().compute(A.sparseView()).inverse();
Scalar sumdiff = 0; // Check the diff only of the non-zero elements
for (Eigen::Index j = 0; j < A.cols(); j++) {
for (typename MatrixType::InnerIterator iter(sparseInv, j); iter; ++iter) {
const Scalar diff = std::abs(inv(iter.row(), iter.col()) - iter.value());
VERIFY_IS_APPROX_OR_LESS_THAN(diff, 1e-11);
if (iter.value() != 0) {
sumdiff += diff;
}
}
}
VERIFY_IS_APPROX_OR_LESS_THAN(sumdiff, 1e-10);
}
EIGEN_DECLARE_TEST(sparse_extra)
{
for(int i = 0; i < g_repeat; i++) {
@ -200,6 +243,8 @@ EIGEN_DECLARE_TEST(sparse_extra)
CALL_SUBTEST_5( (check_marketio_vector<Matrix<std::complex<float>,Dynamic,1> >()) );
CALL_SUBTEST_5( (check_marketio_vector<Matrix<std::complex<double>,Dynamic,1> >()) );
CALL_SUBTEST_6((check_sparse_inverse<double>()));
TEST_SET_BUT_UNUSED_VARIABLE(s);
}
}