mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-23 01:59:38 +08:00
Add Sparse Subset of Matrix Inverse
This commit is contained in:
parent
34780d8bd1
commit
69714ff613
@ -816,6 +816,31 @@ struct SparseLUMatrixLReturnType : internal::no_assignment_operator
|
||||
m_mapL.template solveTransposedInPlace<Conjugate>(X);
|
||||
}
|
||||
|
||||
SparseMatrix<Scalar, ColMajor, Index> toSparse() const {
|
||||
ArrayXi colCount = ArrayXi::Ones(cols());
|
||||
for (Index i = 0; i < cols(); i++) {
|
||||
typename MappedSupernodalType::InnerIterator iter(m_mapL, i);
|
||||
for (; iter; ++iter) {
|
||||
if (iter.row() > iter.col()) {
|
||||
colCount(iter.col())++;
|
||||
}
|
||||
}
|
||||
}
|
||||
SparseMatrix<Scalar, ColMajor, Index> sL(rows(), cols());
|
||||
sL.reserve(colCount);
|
||||
for (Index i = 0; i < cols(); i++) {
|
||||
sL.insert(i, i) = 1.0;
|
||||
typename MappedSupernodalType::InnerIterator iter(m_mapL, i);
|
||||
for (; iter; ++iter) {
|
||||
if (iter.row() > iter.col()) {
|
||||
sL.insert(iter.row(), iter.col()) = iter.value();
|
||||
}
|
||||
}
|
||||
}
|
||||
sL.makeCompressed();
|
||||
return sL;
|
||||
}
|
||||
|
||||
const MappedSupernodalType& m_mapL;
|
||||
};
|
||||
|
||||
@ -915,6 +940,32 @@ struct SparseLUMatrixUReturnType : internal::no_assignment_operator
|
||||
}// End For U-solve
|
||||
}
|
||||
|
||||
SparseMatrix<Scalar, RowMajor, Index> toSparse() {
|
||||
ArrayXi rowCount = ArrayXi::Zero(rows());
|
||||
for (Index i = 0; i < cols(); i++) {
|
||||
typename MatrixLType::InnerIterator iter(m_mapL, i);
|
||||
for (; iter; ++iter) {
|
||||
if (iter.row() <= iter.col()) {
|
||||
rowCount(iter.row())++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SparseMatrix<Scalar, RowMajor, Index> sU(rows(), cols());
|
||||
sU.reserve(rowCount);
|
||||
for (Index i = 0; i < cols(); i++) {
|
||||
typename MatrixLType::InnerIterator iter(m_mapL, i);
|
||||
for (; iter; ++iter) {
|
||||
if (iter.row() <= iter.col()) {
|
||||
sU.insert(iter.row(), iter.col()) = iter.value();
|
||||
}
|
||||
}
|
||||
}
|
||||
sU.makeCompressed();
|
||||
const SparseMatrix<Scalar, RowMajor, Index> u = m_mapU; // convert to RowMajor
|
||||
sU += u;
|
||||
return sU;
|
||||
}
|
||||
|
||||
const MatrixLType& m_mapL;
|
||||
const MatrixUType& m_mapU;
|
||||
|
@ -33,6 +33,7 @@
|
||||
*
|
||||
* This module contains some experimental features extending the sparse module:
|
||||
* - A RandomSetter which is a wrapper object allowing to set/update a sparse matrix with random access.
|
||||
* - A SparseInverse which calculates a sparse subset of the inverse of a sparse matrix corresponding to nonzeros of the input
|
||||
* - MatrixMarket format(https://math.nist.gov/MatrixMarket/formats.html) readers and writers for sparse and dense matrices.
|
||||
*
|
||||
* \code
|
||||
@ -42,6 +43,7 @@
|
||||
|
||||
|
||||
#include "src/SparseExtra/RandomSetter.h"
|
||||
#include "src/SparseExtra/SparseInverse.h"
|
||||
|
||||
#include "src/SparseExtra/MarketIO.h"
|
||||
|
||||
|
231
unsupported/Eigen/src/SparseExtra/SparseInverse.h
Normal file
231
unsupported/Eigen/src/SparseExtra/SparseInverse.h
Normal file
@ -0,0 +1,231 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2022 Julian Kent <jkflying@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSEINVERSE_H
|
||||
#define EIGEN_SPARSEINVERSE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
#include "../../../../Eigen/Sparse"
|
||||
#include "../../../../Eigen/SparseLU"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/**
|
||||
* @brief Kahan algorithm based accumulator
|
||||
*
|
||||
* The Kahan sum algorithm guarantees to bound the error from floating point
|
||||
* accumulation to a fixed value, regardless of the number of accumulations
|
||||
* performed. Naive accumulation accumulates errors O(N), and pairwise O(logN).
|
||||
* However pairwise also requires O(logN) memory while Kahan summation requires
|
||||
* O(1) memory, but 4x the operations / latency.
|
||||
*
|
||||
* NB! Do not enable associative math optimizations, they may cause the Kahan
|
||||
* summation to be optimized out leaving you with naive summation again.
|
||||
*
|
||||
*/
|
||||
template <typename Scalar>
|
||||
class KahanSum {
|
||||
// Straighforward Kahan summation for accurate accumulation of a sum of numbers
|
||||
Scalar _sum{};
|
||||
Scalar _correction{};
|
||||
|
||||
public:
|
||||
Scalar value() { return _sum; }
|
||||
|
||||
void operator+=(Scalar increment) {
|
||||
const Scalar correctedIncrement = increment + _correction;
|
||||
const Scalar previousSum = _sum;
|
||||
_sum += correctedIncrement;
|
||||
_correction = correctedIncrement - (_sum - previousSum);
|
||||
}
|
||||
};
|
||||
template <typename Scalar, Index Width = 16>
|
||||
class FABSum {
|
||||
// https://epubs.siam.org/doi/pdf/10.1137/19M1257780
|
||||
// Fast and Accurate Blocked Summation
|
||||
// Uses naive summation for the fast sum, and Kahan summation for the accurate sum
|
||||
// Theoretically SIMD sum could be changed to a tree sum which would improve accuracy
|
||||
// over naive summation
|
||||
KahanSum<Scalar> _totalSum;
|
||||
Matrix<Scalar, Width, 1> _block;
|
||||
Index _blockUsed{};
|
||||
|
||||
public:
|
||||
Scalar value() { return _block.topRows(_blockUsed).sum() + _totalSum.value(); }
|
||||
|
||||
void operator+=(Scalar increment) {
|
||||
_block(_blockUsed++, 0) = increment;
|
||||
if (_blockUsed == Width) {
|
||||
_totalSum += _block.sum();
|
||||
_blockUsed = 0;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief computes an accurate dot product on two sparse vectors
|
||||
*
|
||||
* Uses an accurate summation algorithm for the accumulator in order to
|
||||
* compute an accurate dot product for two sparse vectors.
|
||||
*
|
||||
*/
|
||||
template <typename Derived, typename OtherDerived>
|
||||
typename Derived::Scalar accurateDot(const SparseMatrixBase<Derived>& A, const SparseMatrixBase<OtherDerived>& other) {
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
||||
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived, OtherDerived)
|
||||
static_assert(internal::is_same<Scalar, typename OtherDerived::Scalar>::value, "mismatched types");
|
||||
|
||||
internal::evaluator<Derived> thisEval(A.derived());
|
||||
typename Derived::ReverseInnerIterator i(thisEval, 0);
|
||||
|
||||
internal::evaluator<OtherDerived> otherEval(other.derived());
|
||||
typename OtherDerived::ReverseInnerIterator j(otherEval, 0);
|
||||
|
||||
FABSum<Scalar> res;
|
||||
while (i && j) {
|
||||
if (i.index() == j.index()) {
|
||||
res += numext::conj(i.value()) * j.value();
|
||||
--i;
|
||||
--j;
|
||||
} else if (i.index() > j.index())
|
||||
--i;
|
||||
else
|
||||
--j;
|
||||
}
|
||||
return res.value();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief calculate sparse subset of inverse of sparse matrix
|
||||
*
|
||||
* This class returns a sparse subset of the inverse of the input matrix.
|
||||
* The nonzeros correspond to the nonzeros of the input, plus any additional
|
||||
* elements required due to fill-in of the internal LU factorization. This is
|
||||
* is minimized via a applying a fill-reducing permutation as part of the LU
|
||||
* factorization.
|
||||
*
|
||||
* If there are specific entries of the input matrix which you need inverse
|
||||
* values for, which are zero for the input, you need to insert entries into
|
||||
* the input sparse matrix for them to be calculated.
|
||||
*
|
||||
* Due to the sensitive nature of matrix inversion, particularly on large
|
||||
* matrices which are made possible via sparsity, high accuracy dot products
|
||||
* based on Kahan summation are used to reduce numerical error. If you still
|
||||
* encounter numerical errors you may with to equilibrate your matrix before
|
||||
* calculating the inverse, as well as making sure it is actually full rank.
|
||||
*/
|
||||
template <typename Scalar>
|
||||
class SparseInverse {
|
||||
public:
|
||||
typedef SparseMatrix<Scalar, ColMajor> MatrixType;
|
||||
typedef SparseMatrix<Scalar, RowMajor> RowMatrixType;
|
||||
|
||||
SparseInverse() {}
|
||||
|
||||
/**
|
||||
* @brief This Constructor is for if you already have a factored SparseLU and would like to use it to calculate a
|
||||
* sparse inverse.
|
||||
*
|
||||
* Just call this constructor with your already factored SparseLU class and you can directly call the .inverse()
|
||||
* method to get the result.
|
||||
*/
|
||||
SparseInverse(const SparseLU<MatrixType>& slu) { _result = computeInverse(slu); }
|
||||
|
||||
/**
|
||||
* @brief Calculate the sparse inverse from a given sparse input
|
||||
*/
|
||||
SparseInverse& compute(const SparseMatrix<Scalar>& A) {
|
||||
SparseLU<MatrixType> slu;
|
||||
slu.compute(A);
|
||||
_result = computeInverse(slu);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief return the already-calculated sparse inverse, or a 0x0 matrix if it could not be computed
|
||||
*/
|
||||
const MatrixType& inverse() const { return _result; }
|
||||
|
||||
/**
|
||||
* @brief Internal function to calculate the sparse inverse in a functional way
|
||||
* @return A sparse inverse representation, or, if the decomposition didn't complete, a 0x0 matrix.
|
||||
*/
|
||||
static MatrixType computeInverse(const SparseLU<MatrixType>& slu) {
|
||||
if (slu.info() != Success) {
|
||||
return MatrixType(0, 0);
|
||||
}
|
||||
|
||||
// Extract from SparseLU and decompose into L, inverse D and U terms
|
||||
Matrix<Scalar, Dynamic, 1> invD;
|
||||
RowMatrixType Upper;
|
||||
{
|
||||
RowMatrixType DU = slu.matrixU().toSparse();
|
||||
invD = DU.diagonal().cwiseInverse();
|
||||
Upper = (invD.asDiagonal() * DU).template triangularView<StrictlyUpper>();
|
||||
}
|
||||
MatrixType Lower = slu.matrixL().toSparse().template triangularView<StrictlyLower>();
|
||||
|
||||
// Compute the inverse and reapply the permutation matrix from the LU decomposition
|
||||
return slu.colsPermutation().transpose() * computeInverse(Upper, invD, Lower) * slu.rowsPermutation();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Internal function to calculate the inverse from strictly upper, diagonal and strictly lower components
|
||||
*/
|
||||
static MatrixType computeInverse(const RowMatrixType& Upper, const Matrix<Scalar, Dynamic, 1>& inverseDiagonal,
|
||||
const MatrixType& Lower) {
|
||||
// Calculate the 'minimal set', which is the nonzeros of (L+U).transpose()
|
||||
// It could be zeroed, but we will overwrite all non-zeros anyways.
|
||||
MatrixType colInv = Lower.transpose().template triangularView<UnitUpper>();
|
||||
colInv += Upper.transpose();
|
||||
|
||||
// We also need rowmajor representation in order to do efficient row-wise dot products
|
||||
RowMatrixType rowInv = Upper.transpose().template triangularView<UnitLower>();
|
||||
rowInv += Lower.transpose();
|
||||
|
||||
// Use the Takahashi algorithm to build the supporting elements of the inverse
|
||||
// upwards and to the left, from the bottom right element, 1 col/row at a time
|
||||
for (Index recurseLevel = Upper.cols() - 1; recurseLevel >= 0; recurseLevel--) {
|
||||
const auto& col = Lower.col(recurseLevel);
|
||||
const auto& row = Upper.row(recurseLevel);
|
||||
|
||||
// Calculate the inverse values for the nonzeros in this column
|
||||
typename MatrixType::ReverseInnerIterator colIter(colInv, recurseLevel);
|
||||
for (; recurseLevel < colIter.index(); --colIter) {
|
||||
const Scalar element = -accurateDot(col, rowInv.row(colIter.index()));
|
||||
colIter.valueRef() = element;
|
||||
rowInv.coeffRef(colIter.index(), recurseLevel) = element;
|
||||
}
|
||||
|
||||
// Calculate the inverse values for the nonzeros in this row
|
||||
typename RowMatrixType::ReverseInnerIterator rowIter(rowInv, recurseLevel);
|
||||
for (; recurseLevel < rowIter.index(); --rowIter) {
|
||||
const Scalar element = -accurateDot(row, colInv.col(rowIter.index()));
|
||||
rowIter.valueRef() = element;
|
||||
colInv.coeffRef(recurseLevel, rowIter.index()) = element;
|
||||
}
|
||||
|
||||
// And finally the diagonal, which corresponds to both row and col iterator now
|
||||
const Scalar diag = inverseDiagonal(recurseLevel) - accurateDot(row, colInv.col(recurseLevel));
|
||||
rowIter.valueRef() = diag;
|
||||
colIter.valueRef() = diag;
|
||||
}
|
||||
|
||||
return colInv;
|
||||
}
|
||||
|
||||
private:
|
||||
MatrixType _result;
|
||||
};
|
||||
|
||||
} // namespace Eigen
|
||||
#endif
|
@ -164,6 +164,49 @@ void check_marketio_dense()
|
||||
VERIFY_IS_EQUAL(m1,m2);
|
||||
}
|
||||
|
||||
template <typename Scalar>
|
||||
void check_sparse_inverse() {
|
||||
typedef SparseMatrix<Scalar> MatrixType;
|
||||
typedef SparseMatrix<Scalar, RowMajor> RowMatrixType;
|
||||
|
||||
Matrix<Scalar, -1, -1> A;
|
||||
A.resize(1000, 1000);
|
||||
A.fill(0);
|
||||
A.setIdentity();
|
||||
A.col(0).array() += 1;
|
||||
A.row(0).array() += 2;
|
||||
A.col(2).array() += 3;
|
||||
A.row(7).array() += 3;
|
||||
A.col(9).array() += 3;
|
||||
A.block(3, 4, 4, 2).array() += 9;
|
||||
A.middleRows(10, 50).array() += 3;
|
||||
A.middleCols(50, 50).array() += 40;
|
||||
A.block(500, 300, 40, 20).array() += 10;
|
||||
A.transposeInPlace();
|
||||
|
||||
Eigen::SparseLU<MatrixType> slu;
|
||||
slu.compute(A.sparseView());
|
||||
Matrix<Scalar, -1, -1> Id(A.rows(), A.cols());
|
||||
Id.setIdentity();
|
||||
Matrix<Scalar, -1, -1> inv = slu.solve(Id);
|
||||
|
||||
const MatrixType sparseInv = Eigen::SparseInverse<Scalar>().compute(A.sparseView()).inverse();
|
||||
|
||||
Scalar sumdiff = 0; // Check the diff only of the non-zero elements
|
||||
for (Eigen::Index j = 0; j < A.cols(); j++) {
|
||||
for (typename MatrixType::InnerIterator iter(sparseInv, j); iter; ++iter) {
|
||||
const Scalar diff = std::abs(inv(iter.row(), iter.col()) - iter.value());
|
||||
VERIFY_IS_APPROX_OR_LESS_THAN(diff, 1e-11);
|
||||
|
||||
if (iter.value() != 0) {
|
||||
sumdiff += diff;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
VERIFY_IS_APPROX_OR_LESS_THAN(sumdiff, 1e-10);
|
||||
}
|
||||
|
||||
EIGEN_DECLARE_TEST(sparse_extra)
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
@ -200,6 +243,8 @@ EIGEN_DECLARE_TEST(sparse_extra)
|
||||
CALL_SUBTEST_5( (check_marketio_vector<Matrix<std::complex<float>,Dynamic,1> >()) );
|
||||
CALL_SUBTEST_5( (check_marketio_vector<Matrix<std::complex<double>,Dynamic,1> >()) );
|
||||
|
||||
CALL_SUBTEST_6((check_sparse_inverse<double>()));
|
||||
|
||||
TEST_SET_BUT_UNUSED_VARIABLE(s);
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user