mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-09 14:41:49 +08:00
bug #792: SparseLU::factorize failed for structurally rank deficient matrices
This commit is contained in:
parent
c4432aad15
commit
6a3797f46f
@ -71,7 +71,7 @@ Index SparseLUImpl<Scalar,Index>::pivotL(const Index jcol, const RealScalar& dia
|
|||||||
|
|
||||||
// Determine the largest abs numerical value for partial pivoting
|
// Determine the largest abs numerical value for partial pivoting
|
||||||
Index diagind = iperm_c(jcol); // diagonal index
|
Index diagind = iperm_c(jcol); // diagonal index
|
||||||
RealScalar pivmax = 0.0;
|
RealScalar pivmax(-1.0);
|
||||||
Index pivptr = nsupc;
|
Index pivptr = nsupc;
|
||||||
Index diag = emptyIdxLU;
|
Index diag = emptyIdxLU;
|
||||||
RealScalar rtemp;
|
RealScalar rtemp;
|
||||||
@ -87,8 +87,9 @@ Index SparseLUImpl<Scalar,Index>::pivotL(const Index jcol, const RealScalar& dia
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Test for singularity
|
// Test for singularity
|
||||||
if ( pivmax == 0.0 ) {
|
if ( pivmax <= RealScalar(0.0) ) {
|
||||||
pivrow = lsub_ptr[pivptr];
|
// if pivmax == -1, the column is structurally empty, otherwise it is only numerically zero
|
||||||
|
pivrow = pivmax < RealScalar(0.0) ? diagind : lsub_ptr[pivptr];
|
||||||
perm_r(pivrow) = jcol;
|
perm_r(pivrow) = jcol;
|
||||||
return (jcol+1);
|
return (jcol+1);
|
||||||
}
|
}
|
||||||
|
@ -277,7 +277,17 @@ int generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, Dens
|
|||||||
return size;
|
return size;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename Solver> void check_sparse_square_solving(Solver& solver)
|
|
||||||
|
struct prune_column {
|
||||||
|
int m_col;
|
||||||
|
prune_column(int col) : m_col(col) {}
|
||||||
|
template<class Scalar>
|
||||||
|
bool operator()(int, int col, const Scalar&) const {
|
||||||
|
return col != m_col;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Solver> void check_sparse_square_solving(Solver& solver, bool checkDeficient = false)
|
||||||
{
|
{
|
||||||
typedef typename Solver::MatrixType Mat;
|
typedef typename Solver::MatrixType Mat;
|
||||||
typedef typename Mat::Scalar Scalar;
|
typedef typename Mat::Scalar Scalar;
|
||||||
@ -309,6 +319,13 @@ template<typename Solver> void check_sparse_square_solving(Solver& solver)
|
|||||||
b = DenseVector::Zero(size);
|
b = DenseVector::Zero(size);
|
||||||
check_sparse_solving(solver, A, b, dA, b);
|
check_sparse_solving(solver, A, b, dA, b);
|
||||||
}
|
}
|
||||||
|
// regression test for Bug 792 (structurally rank deficient matrices):
|
||||||
|
if(checkDeficient && size>1) {
|
||||||
|
int col = internal::random<int>(0,size-1);
|
||||||
|
A.prune(prune_column(col));
|
||||||
|
solver.compute(A);
|
||||||
|
VERIFY_IS_EQUAL(solver.info(), NumericalIssue);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// First, get the folder
|
// First, get the folder
|
||||||
|
@ -43,7 +43,7 @@ template<typename T> void test_sparselu_T()
|
|||||||
|
|
||||||
check_sparse_square_solving(sparselu_colamd);
|
check_sparse_square_solving(sparselu_colamd);
|
||||||
check_sparse_square_solving(sparselu_amd);
|
check_sparse_square_solving(sparselu_amd);
|
||||||
check_sparse_square_solving(sparselu_natural);
|
check_sparse_square_solving(sparselu_natural, true);
|
||||||
|
|
||||||
check_sparse_square_abs_determinant(sparselu_colamd);
|
check_sparse_square_abs_determinant(sparselu_colamd);
|
||||||
check_sparse_square_abs_determinant(sparselu_amd);
|
check_sparse_square_abs_determinant(sparselu_amd);
|
||||||
|
Loading…
x
Reference in New Issue
Block a user