bug #792: SparseLU::factorize failed for structurally rank deficient matrices

This commit is contained in:
Christoph Hertzberg 2015-07-26 20:39:32 +02:00
parent c4432aad15
commit 6a3797f46f
3 changed files with 23 additions and 5 deletions

View File

@ -71,7 +71,7 @@ Index SparseLUImpl<Scalar,Index>::pivotL(const Index jcol, const RealScalar& dia
// Determine the largest abs numerical value for partial pivoting
Index diagind = iperm_c(jcol); // diagonal index
RealScalar pivmax = 0.0;
RealScalar pivmax(-1.0);
Index pivptr = nsupc;
Index diag = emptyIdxLU;
RealScalar rtemp;
@ -87,8 +87,9 @@ Index SparseLUImpl<Scalar,Index>::pivotL(const Index jcol, const RealScalar& dia
}
// Test for singularity
if ( pivmax == 0.0 ) {
pivrow = lsub_ptr[pivptr];
if ( pivmax <= RealScalar(0.0) ) {
// if pivmax == -1, the column is structurally empty, otherwise it is only numerically zero
pivrow = pivmax < RealScalar(0.0) ? diagind : lsub_ptr[pivptr];
perm_r(pivrow) = jcol;
return (jcol+1);
}

View File

@ -277,7 +277,17 @@ int generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, Dens
return size;
}
template<typename Solver> void check_sparse_square_solving(Solver& solver)
struct prune_column {
int m_col;
prune_column(int col) : m_col(col) {}
template<class Scalar>
bool operator()(int, int col, const Scalar&) const {
return col != m_col;
}
};
template<typename Solver> void check_sparse_square_solving(Solver& solver, bool checkDeficient = false)
{
typedef typename Solver::MatrixType Mat;
typedef typename Mat::Scalar Scalar;
@ -309,6 +319,13 @@ template<typename Solver> void check_sparse_square_solving(Solver& solver)
b = DenseVector::Zero(size);
check_sparse_solving(solver, A, b, dA, b);
}
// regression test for Bug 792 (structurally rank deficient matrices):
if(checkDeficient && size>1) {
int col = internal::random<int>(0,size-1);
A.prune(prune_column(col));
solver.compute(A);
VERIFY_IS_EQUAL(solver.info(), NumericalIssue);
}
}
// First, get the folder

View File

@ -43,7 +43,7 @@ template<typename T> void test_sparselu_T()
check_sparse_square_solving(sparselu_colamd);
check_sparse_square_solving(sparselu_amd);
check_sparse_square_solving(sparselu_natural);
check_sparse_square_solving(sparselu_natural, true);
check_sparse_square_abs_determinant(sparselu_colamd);
check_sparse_square_abs_determinant(sparselu_amd);