mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-16 05:35:57 +08:00
Fix epsilon and dummy_precision values in long double for double doubles. Prevented some algorithms from converging on PPC.
(cherry picked from commit 54459214a1b9c67df04bc529474fca1ec9f4c84f)
This commit is contained in:
parent
079de53fa5
commit
6a4a0b66bd
@ -166,7 +166,16 @@ template<> struct NumTraits<double> : GenericNumTraits<double>
|
|||||||
template<> struct NumTraits<long double>
|
template<> struct NumTraits<long double>
|
||||||
: GenericNumTraits<long double>
|
: GenericNumTraits<long double>
|
||||||
{
|
{
|
||||||
static inline long double dummy_precision() { return 1e-15l; }
|
static inline long double dummy_precision() { return static_cast<long double>(1e-15l); }
|
||||||
|
|
||||||
|
#if defined(EIGEN_ARCH_PPC) && (__LDBL_MANT_DIG__ == 106)
|
||||||
|
// PowerPC double double causes issues with some values
|
||||||
|
static inline long double epsilon()
|
||||||
|
{
|
||||||
|
// 2^(-(__LDBL_MANT_DIG__)+1)
|
||||||
|
return static_cast<long double>(2.4651903288156618919116517665087e-32l);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
};
|
};
|
||||||
|
|
||||||
template<typename _Real> struct NumTraits<std::complex<_Real> >
|
template<typename _Real> struct NumTraits<std::complex<_Real> >
|
||||||
|
@ -282,7 +282,7 @@ inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT)
|
|||||||
#endif
|
#endif
|
||||||
int degree = 3;
|
int degree = 3;
|
||||||
for (; degree <= maxPadeDegree; ++degree)
|
for (; degree <= maxPadeDegree; ++degree)
|
||||||
if (normIminusT <= maxNormForPade[degree - 3])
|
if (normIminusT <= static_cast<long double>(maxNormForPade[degree - 3]))
|
||||||
break;
|
break;
|
||||||
return degree;
|
return degree;
|
||||||
}
|
}
|
||||||
|
@ -484,7 +484,39 @@ static void test_reduce_middle_dims() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
<<<<<<< HEAD
|
||||||
void test_cxx11_tensor_reduction() {
|
void test_cxx11_tensor_reduction() {
|
||||||
|
=======
|
||||||
|
template <typename ScalarType, int num_elements, int max_mean>
|
||||||
|
void test_sum_accuracy() {
|
||||||
|
Tensor<double, 1> double_tensor(num_elements);
|
||||||
|
Tensor<ScalarType, 1> tensor(num_elements);
|
||||||
|
for (double prescribed_mean = 0; prescribed_mean <= max_mean; prescribed_mean = numext::maxi(1.0, prescribed_mean*3.99)) {
|
||||||
|
// FIXME: NormalRandomGenerator doesn't work in bfloat and half.
|
||||||
|
double_tensor.setRandom<Eigen::internal::NormalRandomGenerator<double>>();
|
||||||
|
double_tensor += double_tensor.constant(prescribed_mean);
|
||||||
|
tensor = double_tensor.cast<ScalarType>();
|
||||||
|
|
||||||
|
Tensor<ScalarType, 0> sum;
|
||||||
|
sum = tensor.sum();
|
||||||
|
|
||||||
|
// Compute the reference value in double precsion.
|
||||||
|
double expected_sum = 0.0;
|
||||||
|
double abs_sum = 0.0;
|
||||||
|
for (int i = 0; i < num_elements; ++i) {
|
||||||
|
expected_sum += static_cast<double>(tensor(i));
|
||||||
|
abs_sum += static_cast<double>(numext::abs(tensor(i)));
|
||||||
|
}
|
||||||
|
// Test against probabilistic forward error bound. In reality, the error is much smaller
|
||||||
|
// when we use tree summation.
|
||||||
|
double err = Eigen::numext::abs(static_cast<double>(sum()) - expected_sum);
|
||||||
|
double tol = numext::sqrt(static_cast<double>(num_elements)) * NumTraits<ScalarType>::epsilon() * static_cast<ScalarType>(abs_sum);
|
||||||
|
VERIFY_LE(err, tol);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
EIGEN_DECLARE_TEST(cxx11_tensor_reduction) {
|
||||||
|
>>>>>>> 54459214a (Fix epsilon and dummy_precision values in long double for double doubles. Prevented some algorithms from converging on PPC.)
|
||||||
CALL_SUBTEST(test_trivial_reductions<ColMajor>());
|
CALL_SUBTEST(test_trivial_reductions<ColMajor>());
|
||||||
CALL_SUBTEST(test_trivial_reductions<RowMajor>());
|
CALL_SUBTEST(test_trivial_reductions<RowMajor>());
|
||||||
CALL_SUBTEST(test_simple_reductions<ColMajor>());
|
CALL_SUBTEST(test_simple_reductions<ColMajor>());
|
||||||
|
Loading…
x
Reference in New Issue
Block a user