sparse module: added some documentation for the LLT solver

This commit is contained in:
Gael Guennebaud 2008-10-18 18:33:56 +00:00
parent cfca7f71fe
commit 6be0131774
4 changed files with 70 additions and 36 deletions

View File

@ -43,7 +43,8 @@ namespace Eigen {
#include "src/Sparse/SparseSetter.h" #include "src/Sparse/SparseSetter.h"
#include "src/Sparse/SparseProduct.h" #include "src/Sparse/SparseProduct.h"
#include "src/Sparse/TriangularSolver.h" #include "src/Sparse/TriangularSolver.h"
#include "src/Sparse/SparseCholesky.h" #include "src/Sparse/SparseLLT.h"
#include "src/Sparse/SparseLU.h"
#ifdef EIGEN_CHOLMOD_SUPPORT #ifdef EIGEN_CHOLMOD_SUPPORT
# include "src/Sparse/CholmodSupport.h" # include "src/Sparse/CholmodSupport.h"

View File

@ -199,15 +199,8 @@ void SparseLLT<MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
ei_assert(size==b.rows()); ei_assert(size==b.rows());
if (m_status & MatrixLIsDirty) if (m_status & MatrixLIsDirty)
{
// ei_assert(!(m_status & SupernodalFactorIsDirty));
// taucs_supernodal_solve_llt(m_taucsSupernodalFactor,double* b);
matrixL(); matrixL();
} Base::solveInPlace(b);
// else
{
Base::solveInPlace(b);
}
} }
#endif // EIGEN_CHOLMODSUPPORT_H #endif // EIGEN_CHOLMODSUPPORT_H

View File

@ -22,35 +22,21 @@
// License and a copy of the GNU General Public License along with // License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>. // Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SPARSECHOLESKY_H #ifndef EIGEN_SPARSELLT_H
#define EIGEN_SPARSECHOLESKY_H #define EIGEN_SPARSELLT_H
enum SparseBackend {
DefaultBackend,
Taucs,
Cholmod,
SuperLU
};
enum {
CompleteFactorization = 0x0, // full is the default
IncompleteFactorization = 0x1,
MemoryEfficient = 0x2,
SupernodalMultifrontal = 0x4,
SupernodalLeftLooking = 0x8
};
/** \ingroup Sparse_Module /** \ingroup Sparse_Module
* *
* \class SparseLLT * \class SparseLLT
* *
* \brief Standard LLT decomposition of a matrix and associated features * \brief LLT Cholesky decomposition of a sparse matrix and associated features
* *
* \param MatrixType the type of the matrix of which we are computing the LLT decomposition * \param MatrixType the type of the matrix of which we are computing the LLT Cholesky decomposition
* *
* \sa class LLT, class LDLT * \sa class LLT, class LDLT
*/ */
template<typename MatrixType, int Backend = DefaultBackend> class SparseLLT template<typename MatrixType, int Backend = DefaultBackend>
class SparseLLT
{ {
protected: protected:
typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Scalar Scalar;
@ -64,12 +50,15 @@ template<typename MatrixType, int Backend = DefaultBackend> class SparseLLT
public: public:
/** Creates a dummy LLT factorization object with flags \a flags. */
SparseLLT(int flags = 0) SparseLLT(int flags = 0)
: m_flags(flags), m_status(0) : m_flags(flags), m_status(0)
{ {
m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>(); m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>();
} }
/** Creates a LLT object and compute the respective factorization of \a matrix using
* flags \a flags. */
SparseLLT(const MatrixType& matrix, int flags = 0) SparseLLT(const MatrixType& matrix, int flags = 0)
: m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0) : m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0)
{ {
@ -77,18 +66,48 @@ template<typename MatrixType, int Backend = DefaultBackend> class SparseLLT
compute(matrix); compute(matrix);
} }
/** Sets the relative threshold value used to prune zero coefficients during the decomposition.
*
* Setting a value greater than zero speeds up computation, and yields to an imcomplete
* factorization with fewer non zero coefficients. Such approximate factors are especially
* useful to initialize an iterative solver.
*
* \warning if precision is greater that zero, the LLT factorization is not guaranteed to succeed
* even if the matrix is positive definite.
*
* Note that the exact meaning of this parameter might depends on the actual
* backend. Moreover, not all backends support this feature.
*
* \sa precision() */
void setPrecision(RealScalar v) { m_precision = v; } void setPrecision(RealScalar v) { m_precision = v; }
/** \returns the current precision.
*
* \sa setPrecision() */
RealScalar precision() const { return m_precision; } RealScalar precision() const { return m_precision; }
/** Sets the flags. Possible values are:
* - CompleteFactorization
* - IncompleteFactorization
* - MemoryEfficient (hint to use the memory most efficient method offered by the backend)
* - SupernodalMultifrontal (implies a complete factorization if supported by the backend,
* overloads the MemoryEfficient flags)
* - SupernodalLeftLooking (implies a complete factorization if supported by the backend,
* overloads the MemoryEfficient flags)
*
* \sa flags() */
void setFlags(int f) { m_flags = f; } void setFlags(int f) { m_flags = f; }
/** \returns the current flags */
int flags() const { return m_flags; } int flags() const { return m_flags; }
/** Computes/re-computes the LLT factorization */
void compute(const MatrixType& matrix); void compute(const MatrixType& matrix);
/** \returns the lower triangular matrix L */
inline const CholMatrixType& matrixL(void) const { return m_matrix; } inline const CholMatrixType& matrixL(void) const { return m_matrix; }
template<typename Derived> template<typename Derived>
void solveInPlace(MatrixBase<Derived> &b) const; bool solveInPlace(MatrixBase<Derived> &b) const;
/** \returns true if the factorization succeeded */ /** \returns true if the factorization succeeded */
inline bool succeeded(void) const { return m_succeeded; } inline bool succeeded(void) const { return m_succeeded; }
@ -101,7 +120,8 @@ template<typename MatrixType, int Backend = DefaultBackend> class SparseLLT
bool m_succeeded; bool m_succeeded;
}; };
/** Computes / recomputes the LLT decomposition A = LL^* = U^*U of \a matrix /** Computes / recomputes the LLT decomposition of matrix \a a
* using the default algorithm.
*/ */
template<typename MatrixType, int Backend> template<typename MatrixType, int Backend>
void SparseLLT<MatrixType,Backend>::compute(const MatrixType& a) void SparseLLT<MatrixType,Backend>::compute(const MatrixType& a)
@ -109,20 +129,19 @@ void SparseLLT<MatrixType,Backend>::compute(const MatrixType& a)
assert(a.rows()==a.cols()); assert(a.rows()==a.cols());
const int size = a.rows(); const int size = a.rows();
m_matrix.resize(size, size); m_matrix.resize(size, size);
// const RealScalar eps = ei_sqrt(precision<Scalar>());
// allocate a temporary vector for accumulations // allocate a temporary vector for accumulations
AmbiVector<Scalar> tempVector(size); AmbiVector<Scalar> tempVector(size);
RealScalar density = a.nonZeros()/RealScalar(size*size); RealScalar density = a.nonZeros()/RealScalar(size*size);
// TODO estimate the number of nnz // TODO estimate the number of non zeros
m_matrix.startFill(a.nonZeros()*2); m_matrix.startFill(a.nonZeros()*2);
for (int j = 0; j < size; ++j) for (int j = 0; j < size; ++j)
{ {
Scalar x = ei_real(a.coeff(j,j)); Scalar x = ei_real(a.coeff(j,j));
int endSize = size-j-1; int endSize = size-j-1;
// TODO better estimate the density ! // TODO better estimate of the density !
tempVector.init(density>0.001? IsDense : IsSparse); tempVector.init(density>0.001? IsDense : IsSparse);
tempVector.setBounds(j+1,size); tempVector.setBounds(j+1,size);
tempVector.setZero(); tempVector.setZero();
@ -163,15 +182,18 @@ void SparseLLT<MatrixType,Backend>::compute(const MatrixType& a)
m_matrix.endFill(); m_matrix.endFill();
} }
/** Computes b = L^-T L^-1 b */
template<typename MatrixType, int Backend> template<typename MatrixType, int Backend>
template<typename Derived> template<typename Derived>
void SparseLLT<MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const bool SparseLLT<MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const
{ {
const int size = m_matrix.rows(); const int size = m_matrix.rows();
ei_assert(size==b.rows()); ei_assert(size==b.rows());
m_matrix.solveTriangularInPlace(b); m_matrix.solveTriangularInPlace(b);
m_matrix.adjoint().solveTriangularInPlace(b); m_matrix.adjoint().solveTriangularInPlace(b);
return true;
} }
#endif // EIGEN_BASICSPARSECHOLESKY_H #endif // EIGEN_SPARSELLT_H

View File

@ -31,6 +31,24 @@
#define EIGEN_DBG_SPARSE(X) X #define EIGEN_DBG_SPARSE(X) X
#endif #endif
enum SparseBackend {
DefaultBackend,
Taucs,
Cholmod,
SuperLU,
UmfPack
};
// solver flags
enum {
CompleteFactorization = 0x0000, // the default
IncompleteFactorization = 0x0001,
MemoryEfficient = 0x0002,
// For LLT Cholesky:
SupernodalMultifrontal = 0x0010,
SupernodalLeftLooking = 0x0020
};
template<typename Derived> class SparseMatrixBase; template<typename Derived> class SparseMatrixBase;
template<typename _Scalar, int _Flags = 0> class SparseMatrix; template<typename _Scalar, int _Flags = 0> class SparseMatrix;
template<typename _Scalar, int _Flags = 0> class HashMatrix; template<typename _Scalar, int _Flags = 0> class HashMatrix;