Rework JacobiSVD api / template parameters.

There is now an integer QRPreconditioner template parameter, defaulting to full-piv QR.
Since we have to special-case each QR dec anyway, a template template parameter didn't add much value here.
There is an option NoQRPreconditioner if you know your matrices are already square (auto-detected for fixed-size matrices).
This commit is contained in:
Benoit Jacob 2010-10-08 10:42:32 -04:00
parent 58e0cce0f7
commit 6fad2eb97b
4 changed files with 242 additions and 169 deletions

View File

@ -209,15 +209,6 @@ enum {
OnTheRight = 2
};
// options for SVD decomposition
enum {
SkipU = 0x1,
SkipV = 0x2,
AtLeastAsManyRowsAsCols = 0x4,
AtLeastAsManyColsAsRows = 0x8,
Square = AtLeastAsManyRowsAsCols | AtLeastAsManyColsAsRows
};
/* the following could as well be written:
* enum NoChange_t { NoChange };
* but it feels dangerous to disambiguate overloaded functions on enum/integer types.
@ -252,7 +243,7 @@ enum DecompositionOptions {
Pivoting = 0x01, // LDLT,
NoPivoting = 0x02, // LDLT,
ComputeU = 0x10, // SVD,
ComputeR = 0x20, // SVD,
ComputeV = 0x20, // SVD,
EigenvaluesOnly = 0x40, // all eigen solvers
ComputeEigenvectors = 0x80, // all eigen solvers
EigVecMask = EigenvaluesOnly | ComputeEigenvectors,
@ -262,6 +253,13 @@ enum DecompositionOptions {
GenEigMask = Ax_lBx | ABx_lx | BAx_lx
};
enum QRPreconditioners {
NoQRPreconditioner,
HouseholderQRPreconditioner,
ColPivHouseholderQRPreconditioner,
FullPivHouseholderQRPreconditioner
};
/** \brief Enum for reporting the status of a computation.
*/
enum ComputationInfo {

View File

@ -170,7 +170,7 @@ template<typename MatrixType> class HouseholderQR;
template<typename MatrixType> class ColPivHouseholderQR;
template<typename MatrixType> class FullPivHouseholderQR;
template<typename MatrixType> class SVD;
template<typename MatrixType, unsigned int Options = 0> class JacobiSVD;
template<typename MatrixType, int QRPreconditioner = FullPivHouseholderQRPreconditioner> class JacobiSVD;
template<typename MatrixType, int UpLo = Lower> class LLT;
template<typename MatrixType, int UpLo = Lower> class LDLT;
template<typename VectorsType, typename CoeffsType, int Side=OnTheLeft> class HouseholderSequence;

View File

@ -26,22 +26,167 @@
#define EIGEN_JACOBISVD_H
// forward declarations (needed by ICC)
// the empty bodies are required by VC
template<typename MatrixType, unsigned int Options, bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
// the empty bodies are required by MSVC
template<typename MatrixType, int QRPreconditioner,
bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
struct ei_svd_precondition_2x2_block_to_be_real {};
template<typename MatrixType, unsigned int Options,
bool PossiblyMoreRowsThanCols = (Options & AtLeastAsManyColsAsRows) == 0
&& (MatrixType::RowsAtCompileTime==Dynamic
|| (MatrixType::RowsAtCompileTime>MatrixType::ColsAtCompileTime))>
template<typename MatrixType, int QRPreconditioner,
bool PossiblyMoreRowsThanCols = (MatrixType::RowsAtCompileTime == Dynamic)
|| (MatrixType::RowsAtCompileTime > MatrixType::ColsAtCompileTime) >
struct ei_svd_precondition_if_more_rows_than_cols;
template<typename MatrixType, unsigned int Options,
bool PossiblyMoreColsThanRows = (Options & AtLeastAsManyRowsAsCols) == 0
&& (MatrixType::ColsAtCompileTime==Dynamic
|| (MatrixType::ColsAtCompileTime>MatrixType::RowsAtCompileTime))>
template<typename MatrixType, int QRPreconditioner,
bool PossiblyMoreColsThanRows = (MatrixType::ColsAtCompileTime == Dynamic)
|| (MatrixType::ColsAtCompileTime > MatrixType::RowsAtCompileTime) >
struct ei_svd_precondition_if_more_cols_than_rows;
/*** QR preconditioners (R-SVD) ***/
enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
template<typename MatrixType, int QRPreconditioner, int Case>
struct ei_qr_preconditioner_should_do_anything
{
enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
MatrixType::ColsAtCompileTime != Dynamic &&
MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
b = MatrixType::RowsAtCompileTime != Dynamic &&
MatrixType::ColsAtCompileTime != Dynamic &&
MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
ret = !( (QRPreconditioner == NoQRPreconditioner) ||
(Case == PreconditionIfMoreColsThanRows && bool(a)) ||
(Case == PreconditionIfMoreRowsThanCols && bool(b)) )
};
};
template<typename MatrixType, int QRPreconditioner, int Case,
bool DoAnything = ei_qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
> struct ei_qr_preconditioner_impl {};
template<typename MatrixType, int QRPreconditioner, int Case>
struct ei_qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
{
static bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
{
return false;
}
};
template<typename MatrixType>
struct ei_qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
static bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.rows() > matrix.cols())
{
FullPivHouseholderQR<MatrixType> qr(matrix);
svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
if(svd.m_computeU) svd.m_matrixU = qr.matrixQ();
if(svd.m_computeV) svd.m_matrixV = qr.colsPermutation();
return true;
}
return false;
}
};
template<typename MatrixType>
struct ei_qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
static bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.cols() > matrix.rows())
{
typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime,
MatrixType::Options, MatrixType::MaxColsAtCompileTime, MatrixType::MaxRowsAtCompileTime>
TransposeTypeWithSameStorageOrder;
FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint());
svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
if(svd.m_computeV) svd.m_matrixV = qr.matrixQ();
if(svd.m_computeU) svd.m_matrixU = qr.colsPermutation();
return true;
}
else return false;
}
};
template<typename MatrixType>
struct ei_qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
static bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.rows() > matrix.cols())
{
ColPivHouseholderQR<MatrixType> qr(matrix);
svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
if(svd.m_computeU) svd.m_matrixU = qr.householderQ();
if(svd.m_computeV) svd.m_matrixV = qr.colsPermutation();
return true;
}
return false;
}
};
template<typename MatrixType>
struct ei_qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
static bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.cols() > matrix.rows())
{
typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime,
MatrixType::Options, MatrixType::MaxColsAtCompileTime, MatrixType::MaxRowsAtCompileTime>
TransposeTypeWithSameStorageOrder;
ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint());
svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
if(svd.m_computeV) svd.m_matrixV = qr.householderQ();
if(svd.m_computeU) svd.m_matrixU = qr.colsPermutation();
return true;
}
else return false;
}
};
template<typename MatrixType>
struct ei_qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
static bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.rows() > matrix.cols())
{
HouseholderQR<MatrixType> qr(matrix);
svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
if(svd.m_computeU) svd.m_matrixU = qr.householderQ();
if(svd.m_computeV) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
return true;
}
return false;
}
};
template<typename MatrixType>
struct ei_qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
static bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
if(matrix.cols() > matrix.rows())
{
typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime,
MatrixType::Options, MatrixType::MaxColsAtCompileTime, MatrixType::MaxRowsAtCompileTime>
TransposeTypeWithSameStorageOrder;
HouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint());
svd.m_workMatrix = qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
if(svd.m_computeV) svd.m_matrixV = qr.householderQ();
if(svd.m_computeU) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
return true;
}
else return false;
}
};
/** \ingroup SVD_Module
*
*
@ -50,23 +195,23 @@ struct ei_svd_precondition_if_more_cols_than_rows;
* \brief Jacobi SVD decomposition of a square matrix
*
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
* \param Options a bit field of flags offering the following options: \c SkipU and \c SkipV allow to skip the computation of
* the unitaries \a U and \a V respectively; \c AtLeastAsManyRowsAsCols and \c AtLeastAsManyRowsAsCols allows
* to hint the compiler to only generate the corresponding code paths; \c Square is equivantent to the combination of
* the latter two bits and is useful when you know that the matrix is square. Note that when this information can
* be automatically deduced from the matrix type (e.g. a Matrix3f is always square), Eigen does it for you.
* \param QRPreconditioner the type of QR decomposition that will be used internally for the R-SVD step
* for non-square matrices. The default, FullPivHouseholderQR, is safest but slow.
* Consider using ColPivHouseholderQR instead of greater speed while still being
* quite safe, or even HouseholderQR to get closer to the speed and unsafety of
* bidiagonalizing SVD implementations. Finally, if you don't need to handle non-square matrices,
* you don't need any QR decomposition; you can then pass the dummy type NoQRDecomposition,
* which will result in smaller executable size and shorter compilation times.
*
* \sa MatrixBase::jacobiSvd()
*/
template<typename MatrixType, unsigned int Options> class JacobiSVD
template<typename MatrixType, int QRPreconditioner> class JacobiSVD
{
private:
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
enum {
ComputeU = (Options & SkipU) == 0,
ComputeV = (Options & SkipV) == 0,
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
@ -76,21 +221,18 @@ template<typename MatrixType, unsigned int Options> class JacobiSVD
MatrixOptions = MatrixType::Options
};
typedef Matrix<Scalar, Dynamic, Dynamic, MatrixOptions> DummyMatrixType;
typedef typename ei_meta_if<ComputeU,
Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>,
DummyMatrixType>::ret MatrixUType;
typedef typename ei_meta_if<ComputeV,
Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>,
DummyMatrixType>::ret MatrixVType;
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
MatrixUType;
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
MatrixVType;
typedef typename ei_plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
typedef typename ei_plain_row_type<MatrixType>::type RowType;
typedef typename ei_plain_col_type<MatrixType>::type ColType;
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
WorkMatrixType;
WorkMatrixType;
public:
@ -114,19 +256,20 @@ template<typename MatrixType, unsigned int Options> class JacobiSVD
m_workMatrix(rows, cols),
m_isInitialized(false) {}
JacobiSVD(const MatrixType& matrix) : m_matrixU(matrix.rows(), matrix.rows()),
m_matrixV(matrix.cols(), matrix.cols()),
m_singularValues(),
m_workMatrix(),
m_isInitialized(false)
JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
: m_matrixU(matrix.rows(), matrix.rows()),
m_matrixV(matrix.cols(), matrix.cols()),
m_singularValues(),
m_workMatrix(),
m_isInitialized(false)
{
const Index minSize = std::min(matrix.rows(), matrix.cols());
m_singularValues.resize(minSize);
m_workMatrix.resize(minSize, minSize);
compute(matrix);
compute(matrix, computationOptions);
}
JacobiSVD& compute(const MatrixType& matrix);
JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions = 0);
const MatrixUType& matrixU() const
{
@ -151,33 +294,30 @@ template<typename MatrixType, unsigned int Options> class JacobiSVD
MatrixVType m_matrixV;
SingularValuesType m_singularValues;
WorkMatrixType m_workMatrix;
bool m_isInitialized;
bool m_isInitialized, m_computeU, m_computeV;
template<typename _MatrixType, unsigned int _Options, bool _IsComplex>
template<typename _MatrixType, int _QRPreconditioner, bool _IsComplex>
friend struct ei_svd_precondition_2x2_block_to_be_real;
template<typename _MatrixType, unsigned int _Options, bool _PossiblyMoreRowsThanCols>
friend struct ei_svd_precondition_if_more_rows_than_cols;
template<typename _MatrixType, unsigned int _Options, bool _PossiblyMoreRowsThanCols>
friend struct ei_svd_precondition_if_more_cols_than_rows;
template<typename _MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
friend struct ei_qr_preconditioner_impl;
};
template<typename MatrixType, unsigned int Options>
struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options, false>
template<typename MatrixType, int QRPreconditioner>
struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
{
typedef JacobiSVD<MatrixType, Options> SVD;
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
typedef typename SVD::Index Index;
static void run(typename SVD::WorkMatrixType&, JacobiSVD<MatrixType, Options>&, Index, Index) {}
static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
};
template<typename MatrixType, unsigned int Options>
struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options, true>
template<typename MatrixType, int QRPreconditioner>
struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
{
typedef JacobiSVD<MatrixType, Options> SVD;
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename SVD::Index Index;
enum { ComputeU = SVD::ComputeU, ComputeV = SVD::ComputeV };
static void run(typename SVD::WorkMatrixType& work_matrix, JacobiSVD<MatrixType, Options>& svd, Index p, Index q)
static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
{
Scalar z;
PlanarRotation<Scalar> rot;
@ -186,28 +326,28 @@ struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options, true>
{
z = ei_abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.row(p) *= z;
if(ComputeU) svd.m_matrixU.col(p) *= ei_conj(z);
if(svd.m_computeU) svd.m_matrixU.col(p) *= ei_conj(z);
z = ei_abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
work_matrix.row(q) *= z;
if(ComputeU) svd.m_matrixU.col(q) *= ei_conj(z);
if(svd.m_computeU) svd.m_matrixU.col(q) *= ei_conj(z);
}
else
{
rot.c() = ei_conj(work_matrix.coeff(p,p)) / n;
rot.s() = work_matrix.coeff(q,p) / n;
work_matrix.applyOnTheLeft(p,q,rot);
if(ComputeU) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
if(svd.m_computeU) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
if(work_matrix.coeff(p,q) != Scalar(0))
{
Scalar z = ei_abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.col(q) *= z;
if(ComputeV) svd.m_matrixV.col(q) *= z;
if(svd.m_computeV) svd.m_matrixV.col(q) *= z;
}
if(work_matrix.coeff(q,q) != Scalar(0))
{
z = ei_abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
work_matrix.row(q) *= z;
if(ComputeU) svd.m_matrixU.col(q) *= ei_conj(z);
if(svd.m_computeU) svd.m_matrixU.col(q) *= ei_conj(z);
}
}
}
@ -240,98 +380,24 @@ void ei_real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
*j_left = rot1 * j_right->transpose();
}
template<typename MatrixType, unsigned int Options, bool PossiblyMoreRowsThanCols>
struct ei_svd_precondition_if_more_rows_than_cols
{
typedef JacobiSVD<MatrixType, Options> SVD;
static bool run(const MatrixType&, typename SVD::WorkMatrixType&, JacobiSVD<MatrixType, Options>&) { return false; }
};
template<typename MatrixType, unsigned int Options>
struct ei_svd_precondition_if_more_rows_than_cols<MatrixType, Options, true>
{
typedef JacobiSVD<MatrixType, Options> SVD;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
enum { ComputeU = SVD::ComputeU, ComputeV = SVD::ComputeV };
static bool run(const MatrixType& matrix, typename SVD::WorkMatrixType& work_matrix, SVD& svd)
{
Index rows = matrix.rows();
Index cols = matrix.cols();
Index diagSize = cols;
if(rows > cols)
{
FullPivHouseholderQR<MatrixType> qr(matrix);
work_matrix = qr.matrixQR().block(0,0,diagSize,diagSize).template triangularView<Upper>();
if(ComputeU) svd.m_matrixU = qr.matrixQ();
if(ComputeV) svd.m_matrixV = qr.colsPermutation();
return true;
}
else return false;
}
};
template<typename MatrixType, unsigned int Options, bool PossiblyMoreColsThanRows>
struct ei_svd_precondition_if_more_cols_than_rows
{
typedef JacobiSVD<MatrixType, Options> SVD;
static bool run(const MatrixType&, typename SVD::WorkMatrixType&, JacobiSVD<MatrixType, Options>&) { return false; }
};
template<typename MatrixType, unsigned int Options>
struct ei_svd_precondition_if_more_cols_than_rows<MatrixType, Options, true>
{
typedef JacobiSVD<MatrixType, Options> SVD;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
enum {
ComputeU = SVD::ComputeU,
ComputeV = SVD::ComputeV,
RowsAtCompileTime = SVD::RowsAtCompileTime,
ColsAtCompileTime = SVD::ColsAtCompileTime,
MaxRowsAtCompileTime = SVD::MaxRowsAtCompileTime,
MaxColsAtCompileTime = SVD::MaxColsAtCompileTime,
MatrixOptions = SVD::MatrixOptions
};
static bool run(const MatrixType& matrix, typename SVD::WorkMatrixType& work_matrix, SVD& svd)
{
Index rows = matrix.rows();
Index cols = matrix.cols();
Index diagSize = rows;
if(cols > rows)
{
typedef Matrix<Scalar,ColsAtCompileTime,RowsAtCompileTime,
MatrixOptions,MaxColsAtCompileTime,MaxRowsAtCompileTime>
TransposeTypeWithSameStorageOrder;
FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint());
work_matrix = qr.matrixQR().block(0,0,diagSize,diagSize).template triangularView<Upper>().adjoint();
if(ComputeV) svd.m_matrixV = qr.matrixQ();
if(ComputeU) svd.m_matrixU = qr.colsPermutation();
return true;
}
else return false;
}
};
template<typename MatrixType, unsigned int Options>
JacobiSVD<MatrixType, Options>& JacobiSVD<MatrixType, Options>::compute(const MatrixType& matrix)
template<typename MatrixType, int QRPreconditioner>
JacobiSVD<MatrixType, QRPreconditioner>&
JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
{
m_computeU = computationOptions & ComputeU;
m_computeV = computationOptions & ComputeV;
Index rows = matrix.rows();
Index cols = matrix.cols();
Index diagSize = std::min(rows, cols);
m_singularValues.resize(diagSize);
const RealScalar precision = 2 * NumTraits<Scalar>::epsilon();
if(!ei_svd_precondition_if_more_rows_than_cols<MatrixType, Options>::run(matrix, m_workMatrix, *this)
&& !ei_svd_precondition_if_more_cols_than_rows<MatrixType, Options>::run(matrix, m_workMatrix, *this))
if(!ei_qr_preconditioner_impl<MatrixType, QRPreconditioner, PreconditionIfMoreColsThanRows>::run(*this, matrix)
&& !ei_qr_preconditioner_impl<MatrixType, QRPreconditioner, PreconditionIfMoreRowsThanCols>::run(*this, matrix))
{
m_workMatrix = matrix.block(0,0,diagSize,diagSize);
if(ComputeU) m_matrixU.setIdentity(rows,rows);
if(ComputeV) m_matrixV.setIdentity(cols,cols);
if(m_computeU) m_matrixU.setIdentity(rows,rows);
if(m_computeV) m_matrixV.setIdentity(cols,cols);
}
bool finished = false;
@ -346,16 +412,16 @@ JacobiSVD<MatrixType, Options>& JacobiSVD<MatrixType, Options>::compute(const Ma
> std::max(ei_abs(m_workMatrix.coeff(p,p)),ei_abs(m_workMatrix.coeff(q,q)))*precision)
{
finished = false;
ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options>::run(m_workMatrix, *this, p, q);
ei_svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
PlanarRotation<RealScalar> j_left, j_right;
ei_real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
m_workMatrix.applyOnTheLeft(p,q,j_left);
if(ComputeU) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
if(m_computeU) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
m_workMatrix.applyOnTheRight(p,q,j_right);
if(ComputeV) m_matrixV.applyOnTheRight(p,q,j_right);
if(m_computeV) m_matrixV.applyOnTheRight(p,q,j_right);
}
}
}
@ -365,7 +431,7 @@ JacobiSVD<MatrixType, Options>& JacobiSVD<MatrixType, Options>::compute(const Ma
{
RealScalar a = ei_abs(m_workMatrix.coeff(i,i));
m_singularValues.coeffRef(i) = a;
if(ComputeU && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
if(m_computeU && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
}
for(Index i = 0; i < diagSize; i++)
@ -376,8 +442,8 @@ JacobiSVD<MatrixType, Options>& JacobiSVD<MatrixType, Options>::compute(const Ma
{
pos += i;
std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
if(ComputeU) m_matrixU.col(pos).swap(m_matrixU.col(i));
if(ComputeV) m_matrixV.col(pos).swap(m_matrixV.col(i));
if(m_computeU) m_matrixU.col(pos).swap(m_matrixU.col(i));
if(m_computeV) m_matrixV.col(pos).swap(m_matrixV.col(i));
}
}

View File

@ -27,7 +27,8 @@
#include <Eigen/SVD>
#include <Eigen/LU>
template<typename MatrixType, unsigned int Options> void svd(const MatrixType& m = MatrixType(), bool pickrandom = true)
template<typename MatrixType, int QRPreconditioner>
void svd_with_qr_preconditioner(const MatrixType& m = MatrixType(), bool pickrandom = true)
{
typedef typename MatrixType::Index Index;
Index rows = m.rows();
@ -49,7 +50,7 @@ template<typename MatrixType, unsigned int Options> void svd(const MatrixType& m
if(pickrandom) a = MatrixType::Random(rows,cols);
else a = m;
JacobiSVD<MatrixType,Options> svd(a);
JacobiSVD<MatrixType, QRPreconditioner> svd(a, ComputeU|ComputeV);
MatrixType sigma = MatrixType::Zero(rows,cols);
sigma.diagonal() = svd.singularValues().template cast<Scalar>();
MatrixUType u = svd.matrixU();
@ -63,11 +64,19 @@ template<typename MatrixType, unsigned int Options> void svd(const MatrixType& m
VERIFY_IS_UNITARY(v);
}
template<typename MatrixType>
void svd(const MatrixType& m = MatrixType(), bool pickrandom = true)
{
svd_with_qr_preconditioner<MatrixType, FullPivHouseholderQRPreconditioner>(m, pickrandom);
svd_with_qr_preconditioner<MatrixType, ColPivHouseholderQRPreconditioner>(m, pickrandom);
svd_with_qr_preconditioner<MatrixType, HouseholderQRPreconditioner>(m, pickrandom);
}
template<typename MatrixType> void svd_verify_assert()
{
MatrixType tmp;
SVD<MatrixType> svd;
JacobiSVD<MatrixType> svd;
//VERIFY_RAISES_ASSERT(svd.solve(tmp, &tmp))
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.singularValues())
@ -84,24 +93,24 @@ void test_jacobisvd()
Matrix2cd m;
m << 0, 1,
0, 1;
CALL_SUBTEST_1(( svd<Matrix2cd,0>(m, false) ));
CALL_SUBTEST_1(( svd(m, false) ));
m << 1, 0,
1, 0;
CALL_SUBTEST_1(( svd<Matrix2cd,0>(m, false) ));
CALL_SUBTEST_1(( svd(m, false) ));
Matrix2d n;
n << 1, 1,
1, -1;
CALL_SUBTEST_2(( svd<Matrix2d,0>(n, false) ));
CALL_SUBTEST_3(( svd<Matrix3f,0>() ));
CALL_SUBTEST_4(( svd<Matrix4d,Square>() ));
CALL_SUBTEST_5(( svd<Matrix<float,3,5> , AtLeastAsManyColsAsRows>() ));
CALL_SUBTEST_6(( svd<Matrix<double,Dynamic,2> , AtLeastAsManyRowsAsCols>(Matrix<double,Dynamic,2>(10,2)) ));
CALL_SUBTEST_2(( svd(n, false) ));
CALL_SUBTEST_3(( svd<Matrix3f>() ));
CALL_SUBTEST_4(( svd<Matrix4d>() ));
CALL_SUBTEST_5(( svd<Matrix<float,3,5> >() ));
CALL_SUBTEST_6(( svd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));
CALL_SUBTEST_7(( svd<MatrixXf,Square>(MatrixXf(50,50)) ));
CALL_SUBTEST_8(( svd<MatrixXcd,AtLeastAsManyRowsAsCols>(MatrixXcd(14,7)) ));
CALL_SUBTEST_7(( svd<MatrixXf>(MatrixXf(50,50)) ));
CALL_SUBTEST_8(( svd<MatrixXcd>(MatrixXcd(14,7)) ));
}
CALL_SUBTEST_9(( svd<MatrixXf,0>(MatrixXf(300,200)) ));
CALL_SUBTEST_10(( svd<MatrixXcd,AtLeastAsManyColsAsRows>(MatrixXcd(100,150)) ));
CALL_SUBTEST_9(( svd<MatrixXf>(MatrixXf(300,200)) ));
CALL_SUBTEST_10(( svd<MatrixXcd>(MatrixXcd(100,150)) ));
CALL_SUBTEST_3(( svd_verify_assert<Matrix3f>() ));
CALL_SUBTEST_3(( svd_verify_assert<Matrix3d>() ));