mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-25 15:53:19 +08:00
Fix Incomplete Cholesky factorization. Stable but need iterative robust shift
This commit is contained in:
parent
5afaacedc6
commit
71cb78e1ba
@ -38,10 +38,10 @@ class IncompleteCholesky : internal::noncopyable
|
|||||||
typedef Matrix<Scalar,Dynamic,1> ScalarType;
|
typedef Matrix<Scalar,Dynamic,1> ScalarType;
|
||||||
typedef Matrix<Index,Dynamic, 1> IndexType;
|
typedef Matrix<Index,Dynamic, 1> IndexType;
|
||||||
typedef std::vector<std::list<Index> > VectorList;
|
typedef std::vector<std::list<Index> > VectorList;
|
||||||
|
enum { UpLo = _UpLo };
|
||||||
public:
|
public:
|
||||||
IncompleteCholesky() {}
|
IncompleteCholesky() : m_shift(1),m_factorizationIsOk(false) {}
|
||||||
IncompleteCholesky(const MatrixType& matrix)
|
IncompleteCholesky(const MatrixType& matrix) : m_shift(1),m_factorizationIsOk(false)
|
||||||
{
|
{
|
||||||
compute(matrix);
|
compute(matrix);
|
||||||
}
|
}
|
||||||
@ -61,6 +61,12 @@ class IncompleteCholesky : internal::noncopyable
|
|||||||
eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
|
eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
|
||||||
return m_info;
|
return m_info;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Set the initial shift parameter
|
||||||
|
*/
|
||||||
|
void setShift( Scalar shift) { m_shift = shift; }
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* \brief Computes the fill reducing permutation vector.
|
* \brief Computes the fill reducing permutation vector.
|
||||||
*/
|
*/
|
||||||
@ -68,7 +74,7 @@ class IncompleteCholesky : internal::noncopyable
|
|||||||
void analyzePattern(const MatrixType& mat)
|
void analyzePattern(const MatrixType& mat)
|
||||||
{
|
{
|
||||||
OrderingType ord;
|
OrderingType ord;
|
||||||
ord(mat, m_perm);
|
ord(mat.template selfadjointView<UpLo>(), m_perm);
|
||||||
m_analysisIsOk = true;
|
m_analysisIsOk = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -90,10 +96,12 @@ class IncompleteCholesky : internal::noncopyable
|
|||||||
x = m_perm.inverse() * b;
|
x = m_perm.inverse() * b;
|
||||||
else
|
else
|
||||||
x = b;
|
x = b;
|
||||||
|
x = m_scal.asDiagonal() * x;
|
||||||
x = m_L.template triangularView<UnitLower>().solve(x);
|
x = m_L.template triangularView<UnitLower>().solve(x);
|
||||||
x = m_L.adjoint().template triangularView<Upper>().solve(x);
|
x = m_L.adjoint().template triangularView<Upper>().solve(x);
|
||||||
if (m_perm.rows() == b.rows())
|
if (m_perm.rows() == b.rows())
|
||||||
x = m_perm * x;
|
x = m_perm * x;
|
||||||
|
x = m_scal.asDiagonal() * x;
|
||||||
}
|
}
|
||||||
template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
|
template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
|
||||||
solve(const MatrixBase<Rhs>& b) const
|
solve(const MatrixBase<Rhs>& b) const
|
||||||
@ -106,6 +114,8 @@ class IncompleteCholesky : internal::noncopyable
|
|||||||
}
|
}
|
||||||
protected:
|
protected:
|
||||||
SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC
|
SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC
|
||||||
|
ScalarType m_scal; // The vector for scaling the matrix
|
||||||
|
Scalar m_shift; //The initial shift parameter
|
||||||
bool m_analysisIsOk;
|
bool m_analysisIsOk;
|
||||||
bool m_factorizationIsOk;
|
bool m_factorizationIsOk;
|
||||||
bool m_isInitialized;
|
bool m_isInitialized;
|
||||||
@ -124,12 +134,10 @@ void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType
|
|||||||
using std::sqrt;
|
using std::sqrt;
|
||||||
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
|
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
|
||||||
|
|
||||||
// FIXME Stability: We should probably compute the scaling factors and the shifts that are needed to ensure a succesful LLT factorization and an efficient preconditioner.
|
|
||||||
|
|
||||||
// Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
|
// Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
|
||||||
|
|
||||||
// Apply the fill-reducing permutation computed in analyzePattern()
|
// Apply the fill-reducing permutation computed in analyzePattern()
|
||||||
if (m_perm.rows() == mat.rows() )
|
if (m_perm.rows() == mat.rows() ) // To detect the null permutation
|
||||||
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
|
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
|
||||||
else
|
else
|
||||||
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
|
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
|
||||||
@ -143,11 +151,30 @@ void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType
|
|||||||
VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
|
VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
|
||||||
ScalarType curCol(n); // Store a nonzero values in each column
|
ScalarType curCol(n); // Store a nonzero values in each column
|
||||||
IndexType irow(n); // Row indices of nonzero elements in each column
|
IndexType irow(n); // Row indices of nonzero elements in each column
|
||||||
|
|
||||||
|
|
||||||
|
// Computes the scaling factors
|
||||||
|
m_scal.resize(n);
|
||||||
|
for (int j = 0; j < n; j++)
|
||||||
|
{
|
||||||
|
m_scal(j) = m_L.col(j).norm();
|
||||||
|
m_scal(j) = sqrt(m_scal(j));
|
||||||
|
}
|
||||||
|
// Scale and compute the shift for the matrix
|
||||||
|
Scalar mindiag = vals[0];
|
||||||
|
for (int j = 0; j < n; j++){
|
||||||
|
for (int k = colPtr[j]; k < colPtr[j+1]; k++)
|
||||||
|
vals[k] /= (m_scal(j) * m_scal(rowIdx[k]));
|
||||||
|
mindiag = std::min(vals[colPtr[j]], mindiag);
|
||||||
|
}
|
||||||
|
|
||||||
|
if(mindiag < Scalar(0.)) m_shift = m_shift - mindiag;
|
||||||
|
// Apply the shift to the diagonal elements of the matrix
|
||||||
|
for (int j = 0; j < n; j++)
|
||||||
|
vals[colPtr[j]] += m_shift;
|
||||||
// jki version of the Cholesky factorization
|
// jki version of the Cholesky factorization
|
||||||
for (int j=0; j < n; ++j)
|
for (int j=0; j < n; ++j)
|
||||||
{
|
{
|
||||||
//Debug
|
|
||||||
bool update_j = false; //This column has received updates
|
|
||||||
//Left-looking factorize the column j
|
//Left-looking factorize the column j
|
||||||
// First, load the jth column into curCol
|
// First, load the jth column into curCol
|
||||||
Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
|
Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
|
||||||
@ -158,47 +185,47 @@ void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType
|
|||||||
curCol(rowIdx[i]) = vals[i];
|
curCol(rowIdx[i]) = vals[i];
|
||||||
irow(rowIdx[i]) = rowIdx[i];
|
irow(rowIdx[i]) = rowIdx[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
std::list<int>::iterator k;
|
std::list<int>::iterator k;
|
||||||
// Browse all previous columns that will update column j
|
// Browse all previous columns that will update column j
|
||||||
for(k = listCol[j].begin(); k != listCol[j].end(); k++)
|
for(k = listCol[j].begin(); k != listCol[j].end(); k++)
|
||||||
{
|
{
|
||||||
update_j = true;
|
|
||||||
int jk = firstElt(*k); // First element to use in the column
|
int jk = firstElt(*k); // First element to use in the column
|
||||||
Scalar a_jk = vals[jk];
|
|
||||||
diag -= a_jk * a_jk;
|
|
||||||
jk += 1;
|
jk += 1;
|
||||||
for (int i = jk; i < colPtr[*k+1]; i++)
|
for (int i = jk; i < colPtr[*k+1]; i++)
|
||||||
{
|
{
|
||||||
curCol(rowIdx[i]) -= vals[i] * a_jk ;
|
curCol(rowIdx[i]) -= vals[i] * vals[jk] ;
|
||||||
}
|
}
|
||||||
updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
|
updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
|
||||||
}
|
}
|
||||||
|
|
||||||
if(update_j)
|
// Scale the current column
|
||||||
{
|
|
||||||
// Select the largest p elements
|
|
||||||
// p is the original number of elements in the column (without the diagonal)
|
|
||||||
int p = colPtr[j+1] - colPtr[j] - 1 ;
|
|
||||||
internal::QuickSplit(curCol, irow, p);
|
|
||||||
if(RealScalar(diag) <= 0)
|
if(RealScalar(diag) <= 0)
|
||||||
{ //FIXME We can use heuristics (Kershaw, 1978 or above reference ) to get a dynamic shift
|
{
|
||||||
std::cerr << "\nNegative diagonal during Incomplete factorization...abort...\n";
|
std::cerr << "\nNegative diagonal during Incomplete factorization... "<< j << "\n";
|
||||||
m_info = NumericalIssue;
|
m_info = NumericalIssue;
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
RealScalar rdiag = sqrt(RealScalar(diag));
|
RealScalar rdiag = sqrt(RealScalar(diag));
|
||||||
vals[colPtr[j]] = rdiag;
|
vals[colPtr[j]] = rdiag;
|
||||||
Scalar scal = Scalar(1)/rdiag;
|
for (int i = j+1; i < n; i++)
|
||||||
// Insert the largest p elements in the matrix and scale them meanwhile
|
{
|
||||||
|
//Scale
|
||||||
|
curCol(i) /= rdiag;
|
||||||
|
//Update the remaining diagonals with curCol
|
||||||
|
vals[colPtr[i]] -= curCol(i) * curCol(i);
|
||||||
|
}
|
||||||
|
// Select the largest p elements
|
||||||
|
// p is the original number of elements in the column (without the diagonal)
|
||||||
|
int p = colPtr[j+1] - colPtr[j] - 1 ;
|
||||||
|
internal::QuickSplit(curCol, irow, p);
|
||||||
|
// Insert the largest p elements in the matrix
|
||||||
int cpt = 0;
|
int cpt = 0;
|
||||||
for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
|
for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
|
||||||
{
|
{
|
||||||
vals[i] = curCol(cpt) * scal;
|
vals[i] = curCol(cpt);
|
||||||
rowIdx[i] = irow(cpt);
|
rowIdx[i] = irow(cpt);
|
||||||
cpt ++;
|
cpt ++;
|
||||||
}
|
}
|
||||||
}
|
|
||||||
// Get the first smallest row index and put it after the diagonal element
|
// Get the first smallest row index and put it after the diagonal element
|
||||||
Index jk = colPtr(j)+1;
|
Index jk = colPtr(j)+1;
|
||||||
updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
|
updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
|
||||||
@ -218,7 +245,7 @@ inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const Idx
|
|||||||
Index minpos;
|
Index minpos;
|
||||||
rowIdx.segment(jk,p).minCoeff(&minpos);
|
rowIdx.segment(jk,p).minCoeff(&minpos);
|
||||||
minpos += jk;
|
minpos += jk;
|
||||||
if (minpos != rowIdx(jk))
|
if (rowIdx(minpos) != rowIdx(jk))
|
||||||
{
|
{
|
||||||
//Swap
|
//Swap
|
||||||
std::swap(rowIdx(jk),rowIdx(minpos));
|
std::swap(rowIdx(jk),rowIdx(minpos));
|
||||||
@ -230,11 +257,11 @@ inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const Idx
|
|||||||
}
|
}
|
||||||
namespace internal {
|
namespace internal {
|
||||||
|
|
||||||
template<typename _MatrixType, typename Rhs>
|
template<typename _Scalar, int _UpLo, typename OrderingType, typename Rhs>
|
||||||
struct solve_retval<IncompleteCholesky<_MatrixType>, Rhs>
|
struct solve_retval<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
|
||||||
: solve_retval_base<IncompleteCholesky<_MatrixType>, Rhs>
|
: solve_retval_base<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
|
||||||
{
|
{
|
||||||
typedef IncompleteCholesky<_MatrixType> Dec;
|
typedef IncompleteCholesky<_Scalar, _UpLo, OrderingType> Dec;
|
||||||
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
||||||
|
|
||||||
template<typename Dest> void evalTo(Dest& dst) const
|
template<typename Dest> void evalTo(Dest& dst) const
|
||||||
|
Loading…
x
Reference in New Issue
Block a user