mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-11 19:29:02 +08:00
Resolve bad merge.
This commit is contained in:
parent
5f17de3393
commit
73220d2bb0
@ -78,6 +78,8 @@ struct default_packet_traits
|
|||||||
HasDiGamma = 0,
|
HasDiGamma = 0,
|
||||||
HasErf = 0,
|
HasErf = 0,
|
||||||
HasErfc = 0,
|
HasErfc = 0,
|
||||||
|
HasIGamma = 0,
|
||||||
|
HasIGammac = 0,
|
||||||
|
|
||||||
HasRound = 0,
|
HasRound = 0,
|
||||||
HasFloor = 0,
|
HasFloor = 0,
|
||||||
@ -457,6 +459,14 @@ Packet perf(const Packet& a) { using numext::erf; return erf(a); }
|
|||||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||||
Packet perfc(const Packet& a) { using numext::erfc; return erfc(a); }
|
Packet perfc(const Packet& a) { using numext::erfc; return erfc(a); }
|
||||||
|
|
||||||
|
/** \internal \returns the incomplete gamma function igamma(\a a, \a x) */
|
||||||
|
template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
Packet pigamma(const Packet& a, const Packet& x) { using numext::igamma; return igamma(a, x); }
|
||||||
|
|
||||||
|
/** \internal \returns the complementary incomplete gamma function igammac(\a a, \a x) */
|
||||||
|
template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
Packet pigammac(const Packet& a, const Packet& x) { using numext::igammac; return igammac(a, x); }
|
||||||
|
|
||||||
/***************************************************************************
|
/***************************************************************************
|
||||||
* The following functions might not have to be overwritten for vectorized types
|
* The following functions might not have to be overwritten for vectorized types
|
||||||
***************************************************************************/
|
***************************************************************************/
|
||||||
|
@ -129,6 +129,36 @@ namespace Eigen
|
|||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/** \returns an expression of the coefficient-wise igamma(\a a, \a x) to the given arrays.
|
||||||
|
*
|
||||||
|
* This function computes the coefficient-wise incomplete gamma function.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
template<typename Derived,typename ExponentDerived>
|
||||||
|
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived>
|
||||||
|
igamma(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x)
|
||||||
|
{
|
||||||
|
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived>(
|
||||||
|
a.derived(),
|
||||||
|
x.derived()
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \returns an expression of the coefficient-wise igammac(\a a, \a x) to the given arrays.
|
||||||
|
*
|
||||||
|
* This function computes the coefficient-wise complementary incomplete gamma function.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
template<typename Derived,typename ExponentDerived>
|
||||||
|
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived>
|
||||||
|
igammac(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x)
|
||||||
|
{
|
||||||
|
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived>(
|
||||||
|
a.derived(),
|
||||||
|
x.derived()
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
namespace internal
|
namespace internal
|
||||||
{
|
{
|
||||||
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(real,scalar_real_op)
|
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(real,scalar_real_op)
|
||||||
|
@ -95,6 +95,11 @@ template<typename T> struct GenericNumTraits
|
|||||||
static inline T infinity() {
|
static inline T infinity() {
|
||||||
return numext::numeric_limits<T>::infinity();
|
return numext::numeric_limits<T>::infinity();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC
|
||||||
|
static inline T quiet_NaN() {
|
||||||
|
return numext::numeric_limits<T>::quiet_NaN();
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
template<typename T> struct NumTraits : GenericNumTraits<T>
|
template<typename T> struct NumTraits : GenericNumTraits<T>
|
||||||
|
@ -117,6 +117,42 @@ double2 perfc<double2>(const double2& a)
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
float4 pigamma<float4>(const float4& a, const float4& x)
|
||||||
|
{
|
||||||
|
using numext::igamma;
|
||||||
|
return make_float4(
|
||||||
|
igamma(a.x, x.x),
|
||||||
|
igamma(a.y, x.y),
|
||||||
|
igamma(a.z, x.z),
|
||||||
|
igamma(a.w, x.w));
|
||||||
|
}
|
||||||
|
|
||||||
|
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
double2 pigamma<double2>(const double2& a, const double2& x)
|
||||||
|
{
|
||||||
|
using numext::igamma;
|
||||||
|
return make_double2(igamma(a.x, x.x), igamma(a.y, x.y));
|
||||||
|
}
|
||||||
|
|
||||||
|
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
float4 pigammac<float4>(const float4& a, const float4& x)
|
||||||
|
{
|
||||||
|
using numext::igammac;
|
||||||
|
return make_float4(
|
||||||
|
igammac(a.x, x.x),
|
||||||
|
igammac(a.y, x.y),
|
||||||
|
igammac(a.z, x.z),
|
||||||
|
igammac(a.w, x.w));
|
||||||
|
}
|
||||||
|
|
||||||
|
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
double2 pigammac<double2>(const double2& a, const double2& x)
|
||||||
|
{
|
||||||
|
using numext::igammac;
|
||||||
|
return make_double2(igammac(a.x, x.x), igammac(a.y, x.y));
|
||||||
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
} // end namespace internal
|
} // end namespace internal
|
||||||
|
@ -337,6 +337,55 @@ template<> struct functor_traits<scalar_boolean_or_op> {
|
|||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
|
/** \internal
|
||||||
|
* \brief Template functor to compute the incomplete gamma function igamma(a, x)
|
||||||
|
*
|
||||||
|
* \sa class CwiseBinaryOp, Cwise::igamma
|
||||||
|
*/
|
||||||
|
template<typename Scalar> struct scalar_igamma_op {
|
||||||
|
EIGEN_EMPTY_STRUCT_CTOR(scalar_igamma_op)
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& x) const {
|
||||||
|
using numext::igamma; return igamma(a, x);
|
||||||
|
}
|
||||||
|
template<typename Packet>
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& x) const {
|
||||||
|
return internal::pigammac(a, x);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
template<typename Scalar>
|
||||||
|
struct functor_traits<scalar_igamma_op<Scalar> > {
|
||||||
|
enum {
|
||||||
|
// Guesstimate
|
||||||
|
Cost = 20 * NumTraits<Scalar>::MulCost + 10 * NumTraits<Scalar>::AddCost,
|
||||||
|
PacketAccess = packet_traits<Scalar>::HasIGamma
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/** \internal
|
||||||
|
* \brief Template functor to compute the complementary incomplete gamma function igammac(a, x)
|
||||||
|
*
|
||||||
|
* \sa class CwiseBinaryOp, Cwise::igammac
|
||||||
|
*/
|
||||||
|
template<typename Scalar> struct scalar_igammac_op {
|
||||||
|
EIGEN_EMPTY_STRUCT_CTOR(scalar_igammac_op)
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& x) const {
|
||||||
|
using numext::igammac; return igammac(a, x);
|
||||||
|
}
|
||||||
|
template<typename Packet>
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& x) const
|
||||||
|
{
|
||||||
|
return internal::pigammac(a, x);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
template<typename Scalar>
|
||||||
|
struct functor_traits<scalar_igammac_op<Scalar> > {
|
||||||
|
enum {
|
||||||
|
// Guesstimate
|
||||||
|
Cost = 20 * NumTraits<Scalar>::MulCost + 10 * NumTraits<Scalar>::AddCost,
|
||||||
|
PacketAccess = packet_traits<Scalar>::HasIGammac
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
//---------- binary functors bound to a constant, thus appearing as a unary functor ----------
|
//---------- binary functors bound to a constant, thus appearing as a unary functor ----------
|
||||||
|
@ -206,6 +206,8 @@ template<typename Scalar> struct scalar_add_op;
|
|||||||
template<typename Scalar> struct scalar_constant_op;
|
template<typename Scalar> struct scalar_constant_op;
|
||||||
template<typename Scalar> struct scalar_identity_op;
|
template<typename Scalar> struct scalar_identity_op;
|
||||||
template<typename Scalar,bool iscpx> struct scalar_sign_op;
|
template<typename Scalar,bool iscpx> struct scalar_sign_op;
|
||||||
|
template<typename Scalar> struct scalar_igamma_op;
|
||||||
|
template<typename Scalar> struct scalar_igammac_op;
|
||||||
|
|
||||||
template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_product_op;
|
template<typename LhsScalar,typename RhsScalar=LhsScalar> struct scalar_product_op;
|
||||||
template<typename LhsScalar,typename RhsScalar> struct scalar_multiple2_op;
|
template<typename LhsScalar,typename RhsScalar> struct scalar_multiple2_op;
|
||||||
|
@ -148,6 +148,7 @@ template<typename T> struct numeric_limits
|
|||||||
static T (max)() { assert(false && "Highest not supported for this type"); }
|
static T (max)() { assert(false && "Highest not supported for this type"); }
|
||||||
static T (min)() { assert(false && "Lowest not supported for this type"); }
|
static T (min)() { assert(false && "Lowest not supported for this type"); }
|
||||||
static T infinity() { assert(false && "Infinity not supported for this type"); }
|
static T infinity() { assert(false && "Infinity not supported for this type"); }
|
||||||
|
static T quiet_NaN() { assert(false && "quiet_NaN not supported for this type"); }
|
||||||
};
|
};
|
||||||
template<> struct numeric_limits<float>
|
template<> struct numeric_limits<float>
|
||||||
{
|
{
|
||||||
@ -159,6 +160,8 @@ template<> struct numeric_limits<float>
|
|||||||
static float (min)() { return FLT_MIN; }
|
static float (min)() { return FLT_MIN; }
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
static float infinity() { return CUDART_INF_F; }
|
static float infinity() { return CUDART_INF_F; }
|
||||||
|
EIGEN_DEVICE_FUNC
|
||||||
|
static float quiet_NaN() { return CUDART_NAN_F; }
|
||||||
};
|
};
|
||||||
template<> struct numeric_limits<double>
|
template<> struct numeric_limits<double>
|
||||||
{
|
{
|
||||||
@ -170,6 +173,8 @@ template<> struct numeric_limits<double>
|
|||||||
static double (min)() { return DBL_MIN; }
|
static double (min)() { return DBL_MIN; }
|
||||||
EIGEN_DEVICE_FUNC
|
EIGEN_DEVICE_FUNC
|
||||||
static double infinity() { return CUDART_INF; }
|
static double infinity() { return CUDART_INF; }
|
||||||
|
EIGEN_DEVICE_FUNC
|
||||||
|
static double quiet_NaN() { return CUDART_NAN; }
|
||||||
};
|
};
|
||||||
template<> struct numeric_limits<int>
|
template<> struct numeric_limits<int>
|
||||||
{
|
{
|
||||||
|
@ -19,12 +19,15 @@ macro(ei_add_test_internal testname testname_with_suffix)
|
|||||||
endif()
|
endif()
|
||||||
|
|
||||||
if(EIGEN_ADD_TEST_FILENAME_EXTENSION STREQUAL cu)
|
if(EIGEN_ADD_TEST_FILENAME_EXTENSION STREQUAL cu)
|
||||||
cuda_add_executable(${targetname} ${filename})
|
if (${ARGC} GREATER 2)
|
||||||
|
cuda_add_executable(${targetname} ${filename} OPTIONS ${ARGV2})
|
||||||
|
else()
|
||||||
|
cuda_add_executable(${targetname} ${filename})
|
||||||
|
endif()
|
||||||
else()
|
else()
|
||||||
add_executable(${targetname} ${filename})
|
add_executable(${targetname} ${filename})
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
|
||||||
if (targetname MATCHES "^eigen2_")
|
if (targetname MATCHES "^eigen2_")
|
||||||
add_dependencies(eigen2_buildtests ${targetname})
|
add_dependencies(eigen2_buildtests ${targetname})
|
||||||
else()
|
else()
|
||||||
|
@ -295,7 +295,6 @@ template<typename ArrayType> void array_real(const ArrayType& m)
|
|||||||
VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square());
|
VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square());
|
||||||
VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square());
|
VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square());
|
||||||
VERIFY_IS_APPROX(pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0)));
|
VERIFY_IS_APPROX(pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0)));
|
||||||
|
|
||||||
|
|
||||||
VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
|
VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
|
||||||
VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());
|
VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());
|
||||||
@ -305,6 +304,14 @@ template<typename ArrayType> void array_real(const ArrayType& m)
|
|||||||
|
|
||||||
VERIFY_IS_APPROX(log10(m3), log(m3)/log(10));
|
VERIFY_IS_APPROX(log10(m3), log(m3)/log(10));
|
||||||
|
|
||||||
|
// Smoke test to check any compilation issues
|
||||||
|
ArrayType m1_abs_p1 = m1.abs() + 1;
|
||||||
|
ArrayType m2_abs_p1 = m2.abs() + 1;
|
||||||
|
VERIFY_IS_APPROX(Eigen::igamma(m1_abs_p1, m2_abs_p1), Eigen::igamma(m1_abs_p1, m2_abs_p1));
|
||||||
|
VERIFY_IS_APPROX(Eigen::igammac(m1_abs_p1, m2_abs_p1), Eigen::igammac(m1_abs_p1, m2_abs_p1));
|
||||||
|
VERIFY_IS_APPROX(Eigen::igamma(m2_abs_p1, m1_abs_p1), Eigen::igamma(m2_abs_p1, m1_abs_p1));
|
||||||
|
VERIFY_IS_APPROX(Eigen::igammac(m2_abs_p1, m1_abs_p1), Eigen::igammac(m2_abs_p1, m1_abs_p1));
|
||||||
|
|
||||||
// scalar by array division
|
// scalar by array division
|
||||||
const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
|
const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
|
||||||
s1 += Scalar(tiny);
|
s1 += Scalar(tiny);
|
||||||
@ -323,6 +330,48 @@ template<typename ArrayType> void array_real(const ArrayType& m)
|
|||||||
std::numeric_limits<RealScalar>::infinity());
|
std::numeric_limits<RealScalar>::infinity());
|
||||||
VERIFY_IS_EQUAL(numext::digamma(Scalar(-1)),
|
VERIFY_IS_EQUAL(numext::digamma(Scalar(-1)),
|
||||||
std::numeric_limits<RealScalar>::infinity());
|
std::numeric_limits<RealScalar>::infinity());
|
||||||
|
|
||||||
|
Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
|
||||||
|
Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
|
||||||
|
|
||||||
|
// location i*6+j corresponds to a_s[i], x_s[j].
|
||||||
|
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
|
||||||
|
Scalar igamma_s[][6] = {{0.0, nan, nan, nan, nan, nan},
|
||||||
|
{0.0, 0.6321205588285578, 0.7768698398515702,
|
||||||
|
0.9816843611112658, 9.999500016666262e-05, 1.0},
|
||||||
|
{0.0, 0.4275932955291202, 0.608374823728911,
|
||||||
|
0.9539882943107686, 7.522076445089201e-07, 1.0},
|
||||||
|
{0.0, 0.01898815687615381, 0.06564245437845008,
|
||||||
|
0.5665298796332909, 4.166333347221828e-18, 1.0},
|
||||||
|
{0.0, 0.9999780593618628, 0.9999899967080838,
|
||||||
|
0.9999996219837988, 0.9991370418689945, 1.0},
|
||||||
|
{0.0, 0.0, 0.0, 0.0, 0.0, 0.5042041932513908}};
|
||||||
|
Scalar igammac_s[][6] = {{nan, nan, nan, nan, nan, nan},
|
||||||
|
{1.0, 0.36787944117144233, 0.22313016014842982,
|
||||||
|
0.018315638888734182, 0.9999000049998333, 0.0},
|
||||||
|
{1.0, 0.5724067044708798, 0.3916251762710878,
|
||||||
|
0.04601170568923136, 0.9999992477923555, 0.0},
|
||||||
|
{1.0, 0.9810118431238462, 0.9343575456215499,
|
||||||
|
0.4334701203667089, 1.0, 0.0},
|
||||||
|
{1.0, 2.1940638138146658e-05, 1.0003291916285e-05,
|
||||||
|
3.7801620118431334e-07, 0.0008629581310054535,
|
||||||
|
0.0},
|
||||||
|
{1.0, 1.0, 1.0, 1.0, 1.0, 0.49579580674813944}};
|
||||||
|
for (int i = 0; i < 6; ++i) {
|
||||||
|
for (int j = 0; j < 6; ++j) {
|
||||||
|
if ((std::isnan)(igamma_s[i][j])) {
|
||||||
|
VERIFY((std::isnan)(numext::igamma(a_s[i], x_s[j])));
|
||||||
|
} else {
|
||||||
|
VERIFY_IS_APPROX(numext::igamma(a_s[i], x_s[j]), igamma_s[i][j]);
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((std::isnan)(igammac_s[i][j])) {
|
||||||
|
VERIFY((std::isnan)(numext::igammac(a_s[i], x_s[j])));
|
||||||
|
} else {
|
||||||
|
VERIFY_IS_APPROX(numext::igammac(a_s[i], x_s[j]), igammac_s[i][j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
#endif // EIGEN_HAS_C99_MATH
|
#endif // EIGEN_HAS_C99_MATH
|
||||||
|
|
||||||
|
@ -574,6 +574,191 @@ void test_cuda_lgamma(const Scalar stddev)
|
|||||||
cudaFree(d_out);
|
cudaFree(d_out);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <typename Scalar>
|
||||||
|
void test_cuda_digamma()
|
||||||
|
{
|
||||||
|
Tensor<Scalar, 1> in(7);
|
||||||
|
Tensor<Scalar, 1> out(7);
|
||||||
|
Tensor<Scalar, 1> expected_out(7);
|
||||||
|
out.setZero();
|
||||||
|
|
||||||
|
in(0) = Scalar(1);
|
||||||
|
in(1) = Scalar(1.5);
|
||||||
|
in(2) = Scalar(4);
|
||||||
|
in(3) = Scalar(-10.5);
|
||||||
|
in(4) = Scalar(10000.5);
|
||||||
|
in(5) = Scalar(0);
|
||||||
|
in(6) = Scalar(-1);
|
||||||
|
|
||||||
|
expected_out(0) = Scalar(-0.5772156649015329);
|
||||||
|
expected_out(1) = Scalar(0.03648997397857645);
|
||||||
|
expected_out(2) = Scalar(1.2561176684318);
|
||||||
|
expected_out(3) = Scalar(2.398239129535781);
|
||||||
|
expected_out(4) = Scalar(9.210340372392849);
|
||||||
|
expected_out(5) = std::numeric_limits<Scalar>::infinity();
|
||||||
|
expected_out(6) = std::numeric_limits<Scalar>::infinity();
|
||||||
|
|
||||||
|
std::size_t bytes = in.size() * sizeof(Scalar);
|
||||||
|
|
||||||
|
Scalar* d_in;
|
||||||
|
Scalar* d_out;
|
||||||
|
cudaMalloc((void**)(&d_in), bytes);
|
||||||
|
cudaMalloc((void**)(&d_out), bytes);
|
||||||
|
|
||||||
|
cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice);
|
||||||
|
|
||||||
|
Eigen::CudaStreamDevice stream;
|
||||||
|
Eigen::GpuDevice gpu_device(&stream);
|
||||||
|
|
||||||
|
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in(d_in, 7);
|
||||||
|
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 7);
|
||||||
|
|
||||||
|
gpu_out.device(gpu_device) = gpu_in.digamma();
|
||||||
|
|
||||||
|
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
||||||
|
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
|
||||||
|
|
||||||
|
for (int i = 0; i < 5; ++i) {
|
||||||
|
VERIFY_IS_APPROX(out(i), expected_out(i));
|
||||||
|
}
|
||||||
|
for (int i = 5; i < 7; ++i) {
|
||||||
|
VERIFY_IS_EQUAL(out(i), expected_out(i));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Scalar>
|
||||||
|
void test_cuda_igamma()
|
||||||
|
{
|
||||||
|
Tensor<Scalar, 2> a(6, 6);
|
||||||
|
Tensor<Scalar, 2> x(6, 6);
|
||||||
|
Tensor<Scalar, 2> out(6, 6);
|
||||||
|
out.setZero();
|
||||||
|
|
||||||
|
Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
|
||||||
|
Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
|
||||||
|
|
||||||
|
for (int i = 0; i < 6; ++i) {
|
||||||
|
for (int j = 0; j < 6; ++j) {
|
||||||
|
a(i, j) = a_s[i];
|
||||||
|
x(i, j) = x_s[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
|
||||||
|
Scalar igamma_s[][6] = {{0.0, nan, nan, nan, nan, nan},
|
||||||
|
{0.0, 0.6321205588285578, 0.7768698398515702,
|
||||||
|
0.9816843611112658, 9.999500016666262e-05, 1.0},
|
||||||
|
{0.0, 0.4275932955291202, 0.608374823728911,
|
||||||
|
0.9539882943107686, 7.522076445089201e-07, 1.0},
|
||||||
|
{0.0, 0.01898815687615381, 0.06564245437845008,
|
||||||
|
0.5665298796332909, 4.166333347221828e-18, 1.0},
|
||||||
|
{0.0, 0.9999780593618628, 0.9999899967080838,
|
||||||
|
0.9999996219837988, 0.9991370418689945, 1.0},
|
||||||
|
{0.0, 0.0, 0.0, 0.0, 0.0, 0.5042041932513908}};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
std::size_t bytes = a.size() * sizeof(Scalar);
|
||||||
|
|
||||||
|
Scalar* d_a;
|
||||||
|
Scalar* d_x;
|
||||||
|
Scalar* d_out;
|
||||||
|
cudaMalloc((void**)(&d_a), bytes);
|
||||||
|
cudaMalloc((void**)(&d_x), bytes);
|
||||||
|
cudaMalloc((void**)(&d_out), bytes);
|
||||||
|
|
||||||
|
cudaMemcpy(d_a, a.data(), bytes, cudaMemcpyHostToDevice);
|
||||||
|
cudaMemcpy(d_x, x.data(), bytes, cudaMemcpyHostToDevice);
|
||||||
|
|
||||||
|
Eigen::CudaStreamDevice stream;
|
||||||
|
Eigen::GpuDevice gpu_device(&stream);
|
||||||
|
|
||||||
|
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_a(d_a, 6, 6);
|
||||||
|
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_x(d_x, 6, 6);
|
||||||
|
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 6, 6);
|
||||||
|
|
||||||
|
gpu_out.device(gpu_device) = gpu_a.igamma(gpu_x);
|
||||||
|
|
||||||
|
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
||||||
|
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
|
||||||
|
|
||||||
|
for (int i = 0; i < 6; ++i) {
|
||||||
|
for (int j = 0; j < 6; ++j) {
|
||||||
|
if ((std::isnan)(igamma_s[i][j])) {
|
||||||
|
VERIFY((std::isnan)(out(i, j)));
|
||||||
|
} else {
|
||||||
|
VERIFY_IS_APPROX(out(i, j), igamma_s[i][j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Scalar>
|
||||||
|
void test_cuda_igammac()
|
||||||
|
{
|
||||||
|
Tensor<Scalar, 2> a(6, 6);
|
||||||
|
Tensor<Scalar, 2> x(6, 6);
|
||||||
|
Tensor<Scalar, 2> out(6, 6);
|
||||||
|
out.setZero();
|
||||||
|
|
||||||
|
Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
|
||||||
|
Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
|
||||||
|
|
||||||
|
for (int i = 0; i < 6; ++i) {
|
||||||
|
for (int j = 0; j < 6; ++j) {
|
||||||
|
a(i, j) = a_s[i];
|
||||||
|
x(i, j) = x_s[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
|
||||||
|
Scalar igammac_s[][6] = {{nan, nan, nan, nan, nan, nan},
|
||||||
|
{1.0, 0.36787944117144233, 0.22313016014842982,
|
||||||
|
0.018315638888734182, 0.9999000049998333, 0.0},
|
||||||
|
{1.0, 0.5724067044708798, 0.3916251762710878,
|
||||||
|
0.04601170568923136, 0.9999992477923555, 0.0},
|
||||||
|
{1.0, 0.9810118431238462, 0.9343575456215499,
|
||||||
|
0.4334701203667089, 1.0, 0.0},
|
||||||
|
{1.0, 2.1940638138146658e-05, 1.0003291916285e-05,
|
||||||
|
3.7801620118431334e-07, 0.0008629581310054535,
|
||||||
|
0.0},
|
||||||
|
{1.0, 1.0, 1.0, 1.0, 1.0, 0.49579580674813944}};
|
||||||
|
|
||||||
|
std::size_t bytes = a.size() * sizeof(Scalar);
|
||||||
|
|
||||||
|
Scalar* d_a;
|
||||||
|
Scalar* d_x;
|
||||||
|
Scalar* d_out;
|
||||||
|
cudaMalloc((void**)(&d_a), bytes);
|
||||||
|
cudaMalloc((void**)(&d_x), bytes);
|
||||||
|
cudaMalloc((void**)(&d_out), bytes);
|
||||||
|
|
||||||
|
cudaMemcpy(d_a, a.data(), bytes, cudaMemcpyHostToDevice);
|
||||||
|
cudaMemcpy(d_x, x.data(), bytes, cudaMemcpyHostToDevice);
|
||||||
|
|
||||||
|
Eigen::CudaStreamDevice stream;
|
||||||
|
Eigen::GpuDevice gpu_device(&stream);
|
||||||
|
|
||||||
|
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_a(d_a, 6, 6);
|
||||||
|
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_x(d_x, 6, 6);
|
||||||
|
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 6, 6);
|
||||||
|
|
||||||
|
gpu_out.device(gpu_device) = gpu_a.igammac(gpu_x);
|
||||||
|
|
||||||
|
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
|
||||||
|
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
|
||||||
|
|
||||||
|
for (int i = 0; i < 6; ++i) {
|
||||||
|
for (int j = 0; j < 6; ++j) {
|
||||||
|
if ((std::isnan)(igammac_s[i][j])) {
|
||||||
|
VERIFY((std::isnan)(out(i, j)));
|
||||||
|
} else {
|
||||||
|
VERIFY_IS_APPROX(out(i, j), igammac_s[i][j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
template <typename Scalar>
|
template <typename Scalar>
|
||||||
void test_cuda_erf(const Scalar stddev)
|
void test_cuda_erf(const Scalar stddev)
|
||||||
{
|
{
|
||||||
@ -667,30 +852,46 @@ void test_cxx11_tensor_cuda()
|
|||||||
CALL_SUBTEST_3(test_cuda_convolution_2d<RowMajor>());
|
CALL_SUBTEST_3(test_cuda_convolution_2d<RowMajor>());
|
||||||
CALL_SUBTEST_3(test_cuda_convolution_3d<ColMajor>());
|
CALL_SUBTEST_3(test_cuda_convolution_3d<ColMajor>());
|
||||||
CALL_SUBTEST_3(test_cuda_convolution_3d<RowMajor>());
|
CALL_SUBTEST_3(test_cuda_convolution_3d<RowMajor>());
|
||||||
|
|
||||||
CALL_SUBTEST_4(test_cuda_lgamma<float>(1.0f));
|
CALL_SUBTEST_4(test_cuda_lgamma<float>(1.0f));
|
||||||
CALL_SUBTEST_4(test_cuda_lgamma<float>(100.0f));
|
CALL_SUBTEST_4(test_cuda_lgamma<float>(100.0f));
|
||||||
CALL_SUBTEST_4(test_cuda_lgamma<float>(0.01f));
|
CALL_SUBTEST_4(test_cuda_lgamma<float>(0.01f));
|
||||||
CALL_SUBTEST_4(test_cuda_lgamma<float>(0.001f));
|
CALL_SUBTEST_4(test_cuda_lgamma<float>(0.001f));
|
||||||
|
|
||||||
|
CALL_SUBTEST_4(test_cuda_digamma<float>());
|
||||||
|
|
||||||
CALL_SUBTEST_4(test_cuda_erf<float>(1.0f));
|
CALL_SUBTEST_4(test_cuda_erf<float>(1.0f));
|
||||||
CALL_SUBTEST_4(test_cuda_erf<float>(100.0f));
|
CALL_SUBTEST_4(test_cuda_erf<float>(100.0f));
|
||||||
CALL_SUBTEST_4(test_cuda_erf<float>(0.01f));
|
CALL_SUBTEST_4(test_cuda_erf<float>(0.01f));
|
||||||
CALL_SUBTEST_4(test_cuda_erf<float>(0.001f));
|
CALL_SUBTEST_4(test_cuda_erf<float>(0.001f));
|
||||||
|
|
||||||
CALL_SUBTEST_4(test_cuda_erfc<float>(1.0f));
|
CALL_SUBTEST_4(test_cuda_erfc<float>(1.0f));
|
||||||
// CALL_SUBTEST(test_cuda_erfc<float>(100.0f));
|
// CALL_SUBTEST(test_cuda_erfc<float>(100.0f));
|
||||||
CALL_SUBTEST_4(test_cuda_erfc<float>(5.0f)); // CUDA erfc lacks precision for large inputs
|
CALL_SUBTEST_4(test_cuda_erfc<float>(5.0f)); // CUDA erfc lacks precision for large inputs
|
||||||
CALL_SUBTEST_4(test_cuda_erfc<float>(0.01f));
|
CALL_SUBTEST_4(test_cuda_erfc<float>(0.01f));
|
||||||
CALL_SUBTEST_4(test_cuda_erfc<float>(0.001f));
|
CALL_SUBTEST_4(test_cuda_erfc<float>(0.001f));
|
||||||
|
|
||||||
CALL_SUBTEST_4(test_cuda_lgamma<double>(1.0));
|
CALL_SUBTEST_4(test_cuda_lgamma<double>(1.0));
|
||||||
CALL_SUBTEST_4(test_cuda_lgamma<double>(100.0));
|
CALL_SUBTEST_4(test_cuda_lgamma<double>(100.0));
|
||||||
CALL_SUBTEST_4(test_cuda_lgamma<double>(0.01));
|
CALL_SUBTEST_4(test_cuda_lgamma<double>(0.01));
|
||||||
CALL_SUBTEST_4(test_cuda_lgamma<double>(0.001));
|
CALL_SUBTEST_4(test_cuda_lgamma<double>(0.001));
|
||||||
|
|
||||||
|
CALL_SUBTEST_4(test_cuda_digamma<double>());
|
||||||
|
|
||||||
CALL_SUBTEST_4(test_cuda_erf<double>(1.0));
|
CALL_SUBTEST_4(test_cuda_erf<double>(1.0));
|
||||||
CALL_SUBTEST_4(test_cuda_erf<double>(100.0));
|
CALL_SUBTEST_4(test_cuda_erf<double>(100.0));
|
||||||
CALL_SUBTEST_4(test_cuda_erf<double>(0.01));
|
CALL_SUBTEST_4(test_cuda_erf<double>(0.01));
|
||||||
CALL_SUBTEST_4(test_cuda_erf<double>(0.001));
|
CALL_SUBTEST_4(test_cuda_erf<double>(0.001));
|
||||||
|
|
||||||
CALL_SUBTEST_4(test_cuda_erfc<double>(1.0));
|
CALL_SUBTEST_4(test_cuda_erfc<double>(1.0));
|
||||||
// CALL_SUBTEST(test_cuda_erfc<double>(100.0));
|
// CALL_SUBTEST(test_cuda_erfc<double>(100.0));
|
||||||
CALL_SUBTEST_4(test_cuda_erfc<double>(5.0)); // CUDA erfc lacks precision for large inputs
|
CALL_SUBTEST_4(test_cuda_erfc<double>(5.0)); // CUDA erfc lacks precision for large inputs
|
||||||
CALL_SUBTEST_4(test_cuda_erfc<double>(0.01));
|
CALL_SUBTEST_4(test_cuda_erfc<double>(0.01));
|
||||||
CALL_SUBTEST_4(test_cuda_erfc<double>(0.001));
|
CALL_SUBTEST_4(test_cuda_erfc<double>(0.001));
|
||||||
|
|
||||||
|
CALL_SUBTEST_5(test_cuda_igamma<float>());
|
||||||
|
CALL_SUBTEST_5(test_cuda_igammac<float>());
|
||||||
|
|
||||||
|
CALL_SUBTEST_5(test_cuda_igamma<double>());
|
||||||
|
CALL_SUBTEST_5(test_cuda_igammac<double>());
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user