Fix bug #563: assignement to Block<SparseMatrix> is now allowed on non-compressed matrices

This commit is contained in:
Gael Guennebaud 2013-04-12 13:20:13 +02:00
parent 6eaff5a098
commit 7450b23fbb
2 changed files with 44 additions and 24 deletions

View File

@ -119,7 +119,6 @@ public:
template<typename OtherDerived> template<typename OtherDerived>
inline BlockType& operator=(const SparseMatrixBase<OtherDerived>& other) inline BlockType& operator=(const SparseMatrixBase<OtherDerived>& other)
{ {
eigen_assert(m_matrix.isCompressed() && " THE MATRIX SHOULD BE IN COMPRESSED MODE. PLEASE CALL makeCompressed()");
typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _NestedMatrixType; typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _NestedMatrixType;
_NestedMatrixType& matrix = const_cast<_NestedMatrixType&>(m_matrix);; _NestedMatrixType& matrix = const_cast<_NestedMatrixType&>(m_matrix);;
// This assignement is slow if this vector set is not empty // This assignement is slow if this vector set is not empty
@ -130,48 +129,58 @@ public:
// 2 - let's check whether there is enough allocated memory // 2 - let's check whether there is enough allocated memory
Index nnz = tmp.nonZeros(); Index nnz = tmp.nonZeros();
Index nnz_previous = nonZeros(); Index start = m_outerStart==0 ? 0 : matrix.outerIndexPtr()[m_outerStart]; // starting position of the current block
Index free_size = Index(matrix.data().allocatedSize()) + nnz_previous; Index end = m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()]; // ending posiiton of the current block
Index nnz_head = m_outerStart==0 ? 0 : matrix.outerIndexPtr()[m_outerStart]; Index block_size = end - start; // available room in the current block
Index tail = m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()]; Index tail_size = m_matrix.outerIndexPtr()[m_matrix.outerSize()] - end;
Index nnz_tail = matrix.nonZeros() - tail;
Index free_size = m_matrix.isCompressed()
? Index(matrix.data().allocatedSize()) + block_size
: block_size;
if(nnz>free_size) if(nnz>free_size)
{ {
// realloc manually to reduce copies // realloc manually to reduce copies
typename SparseMatrixType::Storage newdata(m_matrix.nonZeros() - nnz_previous + nnz); typename SparseMatrixType::Storage newdata(m_matrix.data().allocatedSize() - block_size + nnz);
std::memcpy(&newdata.value(0), &m_matrix.data().value(0), nnz_head*sizeof(Scalar)); std::memcpy(&newdata.value(0), &m_matrix.data().value(0), start*sizeof(Scalar));
std::memcpy(&newdata.index(0), &m_matrix.data().index(0), nnz_head*sizeof(Index)); std::memcpy(&newdata.index(0), &m_matrix.data().index(0), start*sizeof(Index));
std::memcpy(&newdata.value(nnz_head), &tmp.data().value(0), nnz*sizeof(Scalar)); std::memcpy(&newdata.value(start), &tmp.data().value(0), nnz*sizeof(Scalar));
std::memcpy(&newdata.index(nnz_head), &tmp.data().index(0), nnz*sizeof(Index)); std::memcpy(&newdata.index(start), &tmp.data().index(0), nnz*sizeof(Index));
std::memcpy(&newdata.value(nnz_head+nnz), &matrix.data().value(tail), nnz_tail*sizeof(Scalar)); std::memcpy(&newdata.value(start+nnz), &matrix.data().value(end), tail_size*sizeof(Scalar));
std::memcpy(&newdata.index(nnz_head+nnz), &matrix.data().index(tail), nnz_tail*sizeof(Index)); std::memcpy(&newdata.index(start+nnz), &matrix.data().index(end), tail_size*sizeof(Index));
newdata.resize(m_matrix.outerIndexPtr()[m_matrix.outerSize()] - block_size + nnz);
matrix.data().swap(newdata); matrix.data().swap(newdata);
} }
else else
{ {
// no need to realloc, simply copy the tail at its respective position and insert tmp // no need to realloc, simply copy the tail at its respective position and insert tmp
matrix.data().resize(nnz_head + nnz + nnz_tail); matrix.data().resize(start + nnz + tail_size);
std::memmove(&matrix.data().value(nnz_head+nnz), &matrix.data().value(tail), nnz_tail*sizeof(Scalar)); std::memmove(&matrix.data().value(start+nnz), &matrix.data().value(end), tail_size*sizeof(Scalar));
std::memmove(&matrix.data().index(nnz_head+nnz), &matrix.data().index(tail), nnz_tail*sizeof(Index)); std::memmove(&matrix.data().index(start+nnz), &matrix.data().index(end), tail_size*sizeof(Index));
std::memcpy(&matrix.data().value(nnz_head), &tmp.data().value(0), nnz*sizeof(Scalar)); std::memcpy(&matrix.data().value(start), &tmp.data().value(0), nnz*sizeof(Scalar));
std::memcpy(&matrix.data().index(nnz_head), &tmp.data().index(0), nnz*sizeof(Index)); std::memcpy(&matrix.data().index(start), &tmp.data().index(0), nnz*sizeof(Index));
} }
// update innerNonZeros
if(!m_matrix.isCompressed())
for(Index j=0; j<m_outerSize.value(); ++j)
matrix.innerNonZeroPtr()[m_outerStart+j] = tmp.innerVector(j).nonZeros();
// update outer index pointers // update outer index pointers
Index p = nnz_head; Index p = start;
for(Index k=0; k<m_outerSize.value(); ++k) for(Index k=0; k<m_outerSize.value(); ++k)
{ {
matrix.outerIndexPtr()[m_outerStart+k] = p; matrix.outerIndexPtr()[m_outerStart+k] = p;
p += tmp.innerVector(k).nonZeros(); p += tmp.innerVector(k).nonZeros();
} }
std::ptrdiff_t offset = nnz - nnz_previous; std::ptrdiff_t offset = nnz - block_size;
for(Index k = m_outerStart + m_outerSize.value(); k<=matrix.outerSize(); ++k) for(Index k = m_outerStart + m_outerSize.value(); k<=matrix.outerSize(); ++k)
{ {
matrix.outerIndexPtr()[k] += offset; matrix.outerIndexPtr()[k] += offset;

View File

@ -201,6 +201,8 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
SparseMatrixType m2(rows, rows); SparseMatrixType m2(rows, rows);
initSparse<Scalar>(density, refMat2, m2); initSparse<Scalar>(density, refMat2, m2);
if(internal::random<float>(0,1)>0.5) m2.makeCompressed();
int j0 = internal::random<int>(0,rows-2); int j0 = internal::random<int>(0,rows-2);
int j1 = internal::random<int>(0,rows-2); int j1 = internal::random<int>(0,rows-2);
int n0 = internal::random<int>(1,rows-(std::max)(j0,j1)); int n0 = internal::random<int>(1,rows-(std::max)(j0,j1));
@ -210,12 +212,21 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
if(SparseMatrixType::IsRowMajor) if(SparseMatrixType::IsRowMajor)
VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols)); refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0));
else else
VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
//m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
//refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0); VERIFY_IS_APPROX(m2, refMat2);
m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
if(SparseMatrixType::IsRowMajor)
refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval();
else
refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval();
VERIFY_IS_APPROX(m2, refMat2);
} }
// test basic computations // test basic computations