mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-21 20:09:06 +08:00
computes column norms outside of ei_qrfac()
This commit is contained in:
parent
9cbfdbad22
commit
746c787a76
@ -226,15 +226,11 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(
|
||||
return UserAksed;
|
||||
++njev;
|
||||
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
|
||||
ei_qrfac<Scalar>(n, n, fjac.data(), fjac.rows(), false, iwa, wa1.data(), wa2.data());
|
||||
|
||||
wa2 = fjac.colwise().blueNorm();
|
||||
|
||||
/* on the first iteration and if mode is 1, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
if (iter == 1) {
|
||||
|
||||
/* on the first iteration and if mode is 1, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
if (mode != 2)
|
||||
for (j = 0; j < n; ++j) {
|
||||
diag[j] = wa2[j];
|
||||
@ -251,6 +247,9 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(
|
||||
delta = parameters.factor;
|
||||
}
|
||||
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
ei_qrfac<Scalar>(n, n, fjac.data(), fjac.rows(), false, iwa, wa1.data());
|
||||
|
||||
/* form (q transpose)*fvec and store in qtf. */
|
||||
|
||||
qtf = fvec;
|
||||
@ -269,18 +268,16 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(
|
||||
sing = false;
|
||||
for (j = 0; j < n; ++j) {
|
||||
l = j;
|
||||
if (j)
|
||||
for (i = 0; i < j; ++i) {
|
||||
R[l] = fjac(i,j);
|
||||
l = l + n - i -1;
|
||||
}
|
||||
for (i = 0; i < j; ++i) {
|
||||
R[l] = fjac(i,j);
|
||||
l = l + n - i -1;
|
||||
}
|
||||
R[l] = wa1[j];
|
||||
if (wa1[j] == 0.)
|
||||
sing = true;
|
||||
}
|
||||
|
||||
/* accumulate the orthogonal factor in fjac. */
|
||||
|
||||
ei_qform<Scalar>(n, n, fjac.data(), fjac.rows(), wa1.data());
|
||||
|
||||
/* rescale if necessary. */
|
||||
@ -543,13 +540,10 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(
|
||||
return UserAksed;
|
||||
nfev += std::min(parameters.nb_of_subdiagonals+parameters.nb_of_superdiagonals+ 1, n);
|
||||
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
|
||||
ei_qrfac<Scalar>(n, n, fjac.data(), fjac.rows(), false, iwa, wa1.data(), wa2.data());
|
||||
wa2 = fjac.colwise().blueNorm();
|
||||
|
||||
/* on the first iteration and if mode is 1, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
|
||||
if (iter == 1) {
|
||||
if (mode != 2)
|
||||
for (j = 0; j < n; ++j) {
|
||||
@ -560,7 +554,6 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(
|
||||
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound delta. */
|
||||
|
||||
wa3 = diag.cwise() * x;
|
||||
xnorm = wa3.stableNorm();
|
||||
delta = parameters.factor * xnorm;
|
||||
@ -568,6 +561,9 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(
|
||||
delta = parameters.factor;
|
||||
}
|
||||
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
ei_qrfac<Scalar>(n, n, fjac.data(), fjac.rows(), false, iwa, wa1.data());
|
||||
|
||||
/* form (q transpose)*fvec and store in qtf. */
|
||||
|
||||
qtf = fvec;
|
||||
@ -586,18 +582,16 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(
|
||||
sing = false;
|
||||
for (j = 0; j < n; ++j) {
|
||||
l = j;
|
||||
if (j)
|
||||
for (i = 0; i < j; ++i) {
|
||||
R[l] = fjac(i,j);
|
||||
l = l + n - i -1;
|
||||
}
|
||||
for (i = 0; i < j; ++i) {
|
||||
R[l] = fjac(i,j);
|
||||
l = l + n - i -1;
|
||||
}
|
||||
R[l] = wa1[j];
|
||||
if (wa1[j] == 0.)
|
||||
sing = true;
|
||||
}
|
||||
|
||||
/* accumulate the orthogonal factor in fjac. */
|
||||
|
||||
ei_qform<Scalar>(n, n, fjac.data(), fjac.rows(), wa1.data());
|
||||
|
||||
/* rescale if necessary. */
|
||||
|
@ -248,8 +248,9 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
|
||||
ei_qrfac<Scalar>(m, n, fjac.data(), fjac.rows(), true, ipvt.data(), wa1.data(), wa2.data());
|
||||
ipvt.cwise()-=1; // qrfac() creates ipvt with fortran convetion (1->n), convert it to c (0->n-1)
|
||||
wa2 = fjac.colwise().blueNorm();
|
||||
ei_qrfac<Scalar>(m, n, fjac.data(), fjac.rows(), true, ipvt.data(), wa1.data());
|
||||
ipvt.cwise()-=1; // qrfac() creates ipvt with fortran convention (1->n), convert it to c (0->n-1)
|
||||
|
||||
/* on the first iteration and if mode is 1, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
@ -537,8 +538,9 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
}
|
||||
if (sing) {
|
||||
ipvt.cwise()+=1;
|
||||
ei_qrfac<Scalar>(n, n, fjac.data(), fjac.rows(), true, ipvt.data(), wa1.data(), wa2.data());
|
||||
ipvt.cwise()-=1; // qrfac() creates ipvt with fortran convetion (1->n), convert it to c (0->n-1)
|
||||
wa2 = fjac.colwise().blueNorm();
|
||||
ei_qrfac<Scalar>(n, n, fjac.data(), fjac.rows(), true, ipvt.data(), wa1.data());
|
||||
ipvt.cwise()-=1; // qrfac() creates ipvt with fortran convention (1->n), convert it to c (0->n-1)
|
||||
for (j = 0; j < n; ++j) {
|
||||
if (fjac(j,j) != 0.) {
|
||||
sum = 0.;
|
||||
|
@ -1,8 +1,7 @@
|
||||
|
||||
template <typename Scalar>
|
||||
void ei_qrfac(int m, int n, Scalar *a, int
|
||||
lda, int pivot, int *ipvt, Scalar *rdiag,
|
||||
Scalar *acnorm)
|
||||
lda, int pivot, int *ipvt, Scalar *rdiag)
|
||||
{
|
||||
/* System generated locals */
|
||||
int a_dim1, a_offset;
|
||||
@ -18,7 +17,6 @@ void ei_qrfac(int m, int n, Scalar *a, int
|
||||
Matrix< Scalar, Dynamic, 1 > wa(n+1);
|
||||
|
||||
/* Parameter adjustments */
|
||||
--acnorm;
|
||||
--rdiag;
|
||||
a_dim1 = lda;
|
||||
a_offset = 1 + a_dim1 * 1;
|
||||
@ -31,13 +29,10 @@ void ei_qrfac(int m, int n, Scalar *a, int
|
||||
/* compute the initial column norms and initialize several arrays. */
|
||||
|
||||
for (j = 1; j <= n; ++j) {
|
||||
acnorm[j] = Map< Matrix< Scalar, Dynamic, 1 > >(&a[j * a_dim1 + 1],m).blueNorm();
|
||||
rdiag[j] = acnorm[j];
|
||||
rdiag[j] = Map< Matrix< Scalar, Dynamic, 1 > >(&a[j * a_dim1 + 1],m).blueNorm();
|
||||
wa[j] = rdiag[j];
|
||||
if (pivot) {
|
||||
if (pivot)
|
||||
ipvt[j] = j;
|
||||
}
|
||||
/* L10: */
|
||||
}
|
||||
|
||||
/* reduce a to r with householder transformations. */
|
||||
|
Loading…
x
Reference in New Issue
Block a user