mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-07 21:39:04 +08:00
added preconditioner with preconditioned-Lanczos iteration
This commit is contained in:
parent
5f3880c5a8
commit
751501eade
@ -35,73 +35,133 @@ namespace Eigen {
|
||||
typedef typename Dest::RealScalar RealScalar;
|
||||
typedef typename Dest::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
|
||||
|
||||
// initialize
|
||||
const int maxIters(iters); // initialize maxIters to iters
|
||||
const int N(mat.cols()); // the size of the matrix
|
||||
const RealScalar rhsNorm2(rhs.squaredNorm());
|
||||
// const RealScalar threshold(tol_error); // threshold for original convergence criterion, see below
|
||||
const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold
|
||||
VectorType v(VectorType::Zero(N));
|
||||
VectorType v_hat(rhs-mat*x);
|
||||
RealScalar beta(v_hat.norm());
|
||||
|
||||
|
||||
// VectorType v(VectorType::Zero(N));
|
||||
// VectorType v_hat(rhs-mat*x);
|
||||
|
||||
// Compute initial residual
|
||||
VectorType residual(rhs-mat*x);
|
||||
|
||||
|
||||
// Initialize preconditioned Lanczos
|
||||
VectorType v_old(N); // will be initialized inside loop
|
||||
VectorType v = VectorType::Zero(N); //initialize v
|
||||
VectorType v_new = residual; //initialize v_new
|
||||
VectorType w(N); // will be initialized inside loop
|
||||
VectorType w_new = precond.solve(v_new); // initialize w_new
|
||||
RealScalar beta; // will be initialized inside loop
|
||||
RealScalar beta_new = sqrt(v_new.dot(w_new));
|
||||
v_new /= beta_new;
|
||||
w_new /= beta_new;
|
||||
|
||||
|
||||
|
||||
// RealScalar beta(v_hat.norm());
|
||||
RealScalar c(1.0); // the cosine of the Givens rotation
|
||||
RealScalar c_old(1.0);
|
||||
RealScalar s(0.0); // the sine of the Givens rotation
|
||||
RealScalar s_old(0.0); // the sine of the Givens rotation
|
||||
VectorType w(VectorType::Zero(N));
|
||||
VectorType w_old(w);
|
||||
RealScalar eta(beta);
|
||||
VectorType p_oold(VectorType::Zero(N)); // initialize p_oold=0
|
||||
VectorType p_old(p_oold); // initialize p_old=0
|
||||
VectorType p(N); // will be initialized in loop
|
||||
|
||||
//RealScalar eta(beta); // CHANGE THIS
|
||||
RealScalar norm_rMR=beta;
|
||||
const RealScalar norm_r0(beta);
|
||||
|
||||
VectorType v_old(N), Av(N), w_oold(N); // preallocate temporaty vectors used in iteration
|
||||
RealScalar eta(1.0);
|
||||
|
||||
// VectorType v_old(N), Av(N), w_oold(N); // preallocate temporaty vectors used in iteration
|
||||
RealScalar residualNorm2; // not needed for original convergnce criterion
|
||||
|
||||
int n = 0;
|
||||
while ( n < maxIters ){
|
||||
|
||||
|
||||
// Lanczos
|
||||
// VectorType v_old(v); // now pre-allocated
|
||||
v_old = v;
|
||||
v=v_hat/beta;
|
||||
// VectorType Av(mat*v); // now pre-allocated
|
||||
Av = mat*v;
|
||||
RealScalar alpha(v.transpose()*Av);
|
||||
v_hat=Av-alpha*v-beta*v_old;
|
||||
RealScalar beta_old(beta);
|
||||
beta=v_hat.norm();
|
||||
// Preconditioned Lanczos
|
||||
/* Note that there are 4 variants on the Lanczos algorithm. These are
|
||||
* described in Paige, C. C. (1972). Computational variants of
|
||||
* the Lanczos method for the eigenproblem. IMA Journal of Applied
|
||||
* Mathematics, 10(3), 373–381. The current implementation corresonds
|
||||
* to the case A(2,7) in the paper. It also corresponds to
|
||||
* algorithm 6.14 in Y. Saad, Iterative Methods for Sparse Linear
|
||||
* Systems, 2003 p.173. For the preconditioned version see
|
||||
* A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987).
|
||||
*/
|
||||
beta = beta_new;
|
||||
v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
|
||||
v = v_new; // update
|
||||
w = w_new; // update
|
||||
v_new.noalias() = mat*w - beta*v_old; // compute v_new
|
||||
const RealScalar alpha = v_new.dot(w);
|
||||
v_new -= alpha*v; // overwrite v_new
|
||||
w_new = precond.solve(v_new); // overwrite w_new
|
||||
beta_new = sqrt(v_new.dot(w_new)); // compute beta_new
|
||||
v_new /= beta_new; // overwrite v_new
|
||||
w_new /= beta_new; // overwrite w_new
|
||||
|
||||
// QR
|
||||
RealScalar c_oold(c_old);
|
||||
c_old=c;
|
||||
RealScalar s_oold(s_old);
|
||||
s_old=s;
|
||||
RealScalar r1_hat=c_old *alpha-c_oold*s_old *beta_old;
|
||||
RealScalar r1 =std::pow(std::pow(r1_hat,2)+std::pow(beta,2),0.5);
|
||||
RealScalar r2 =s_old *alpha+c_oold*c_old*beta_old;
|
||||
RealScalar r3 =s_oold*beta_old;
|
||||
//
|
||||
//
|
||||
//
|
||||
//
|
||||
//
|
||||
//
|
||||
//
|
||||
//
|
||||
// // VectorType v_old(v); // now pre-allocated
|
||||
// v_old = v;
|
||||
// v=v_hat/beta;
|
||||
//// VectorType Av(mat*v); // now pre-allocated
|
||||
// Av = mat*v;
|
||||
// RealScalar alpha(v.transpose()*Av);
|
||||
// v_hat=Av-alpha*v-beta*v_old;
|
||||
// RealScalar beta_old(beta);
|
||||
// beta=v_hat.norm();
|
||||
|
||||
// Givens rotation
|
||||
c=r1_hat/r1;
|
||||
s=beta/r1;
|
||||
// Apply QR
|
||||
// RealScalar c_oold(c_old); // store old-old cosine
|
||||
// c_old=c; // store old cosine
|
||||
// RealScalar s_oold(s_old); // store old-old sine
|
||||
// s_old=s; // store old sine
|
||||
// const RealScalar r1_hat=c_old *alpha-c_oold*s_old *beta_old;
|
||||
// const RealScalar r1 =std::pow(std::pow(r1_hat,2)+std::pow(beta,2),0.5);
|
||||
const RealScalar r2 =s*alpha+c*c_old*beta; // s, s_old, c and c_old are still from previous iteration
|
||||
const RealScalar r3 =s_old*beta; // s, s_old, c and c_old are still from previous iteration
|
||||
|
||||
// update
|
||||
// Compute new Givens rotation
|
||||
const RealScalar r1_hat=c*alpha-c_old*s*beta;
|
||||
const RealScalar r1 =std::pow(std::pow(r1_hat,2)+std::pow(beta_new,2),0.5);
|
||||
c_old = c; // store for next iteration
|
||||
s_old = s; // store for next iteration
|
||||
c=r1_hat/r1; // new cosine
|
||||
s=beta/r1; // new sine
|
||||
|
||||
// update w
|
||||
// VectorType w_oold(w_old); // now pre-allocated
|
||||
w_oold = w_old;
|
||||
|
||||
w_old=w;
|
||||
w=(v-r3*w_oold-r2*w_old) /r1;
|
||||
x += c*eta*w;
|
||||
p_oold = p_old;
|
||||
p_old = p;
|
||||
p=(w-r2*p_old-r3*p_oold) /r1;
|
||||
// update x
|
||||
x += c*eta*p;
|
||||
norm_rMR *= std::fabs(s);
|
||||
eta=-s*eta;
|
||||
|
||||
residualNorm2 = (mat*x-rhs).squaredNorm(); // DOES mat*x NEED TO BE RECOMPUTED ????
|
||||
//if(norm_rMR/norm_r0 < threshold){ // original convergence criterion, does not require "mat*x"
|
||||
if ( residualNorm2 < threshold2){
|
||||
break;
|
||||
}
|
||||
n++;
|
||||
|
||||
eta=-s*eta; // update eta
|
||||
n++; // increment iteration
|
||||
}
|
||||
tol_error = std::sqrt(residualNorm2 / rhsNorm2); // return error
|
||||
iters = n; // return number of iterations
|
||||
|
Loading…
x
Reference in New Issue
Block a user