mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-24 22:04:28 +08:00
add a small bench demoing the possibilities of a direct 3x3 eigen decomposition
This commit is contained in:
parent
ea27678153
commit
78d3c54631
139
bench/eig33.cpp
Normal file
139
bench/eig33.cpp
Normal file
@ -0,0 +1,139 @@
|
||||
#include <iostream>
|
||||
#include <Eigen/Core>
|
||||
#include <Eigen/Eigenvalues>
|
||||
#include <Eigen/Geometry>
|
||||
#include <bench/BenchTimer.h>
|
||||
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
template<typename Matrix, typename Roots>
|
||||
inline void computeRoots (const Matrix& rkA, Roots& adRoot)
|
||||
{
|
||||
typedef typename Matrix::Scalar Scalar;
|
||||
const Scalar msInv3 = 1.0/3.0;
|
||||
const Scalar msRoot3 = ei_sqrt(Scalar(3.0));
|
||||
|
||||
Scalar dA00 = rkA(0,0);
|
||||
Scalar dA01 = rkA(0,1);
|
||||
Scalar dA02 = rkA(0,2);
|
||||
Scalar dA11 = rkA(1,1);
|
||||
Scalar dA12 = rkA(1,2);
|
||||
Scalar dA22 = rkA(2,2);
|
||||
|
||||
// The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
|
||||
// eigenvalues are the roots to this equation, all guaranteed to be
|
||||
// real-valued, because the matrix is symmetric.
|
||||
Scalar dC0 = dA00*dA11*dA22 + Scalar(2)*dA01*dA02*dA12 - dA00*dA12*dA12 - dA11*dA02*dA02 - dA22*dA01*dA01;
|
||||
Scalar dC1 = dA00*dA11 - dA01*dA01 + dA00*dA22 - dA02*dA02 + dA11*dA22 - dA12*dA12;
|
||||
Scalar dC2 = dA00 + dA11 + dA22;
|
||||
|
||||
// Construct the parameters used in classifying the roots of the equation
|
||||
// and in solving the equation for the roots in closed form.
|
||||
Scalar dC2Div3 = dC2*msInv3;
|
||||
Scalar dADiv3 = (dC1 - dC2*dC2Div3)*msInv3;
|
||||
if (dADiv3 > Scalar(0))
|
||||
dADiv3 = Scalar(0);
|
||||
|
||||
Scalar dMBDiv2 = Scalar(0.5)*(dC0 + dC2Div3*(Scalar(2)*dC2Div3*dC2Div3 - dC1));
|
||||
|
||||
Scalar dQ = dMBDiv2*dMBDiv2 + dADiv3*dADiv3*dADiv3;
|
||||
if (dQ > Scalar(0))
|
||||
dQ = Scalar(0);
|
||||
|
||||
// Compute the eigenvalues by solving for the roots of the polynomial.
|
||||
Scalar dMagnitude = ei_sqrt(-dADiv3);
|
||||
Scalar dAngle = std::atan2(ei_sqrt(-dQ),dMBDiv2)*msInv3;
|
||||
Scalar dCos = ei_cos(dAngle);
|
||||
Scalar dSin = ei_sin(dAngle);
|
||||
adRoot(0) = dC2Div3 + 2.f*dMagnitude*dCos;
|
||||
adRoot(1) = dC2Div3 - dMagnitude*(dCos + msRoot3*dSin);
|
||||
adRoot(2) = dC2Div3 - dMagnitude*(dCos - msRoot3*dSin);
|
||||
|
||||
// Sort in increasing order.
|
||||
if (adRoot(0) >= adRoot(1))
|
||||
std::swap(adRoot(0),adRoot(1));
|
||||
if (adRoot(1) >= adRoot(2))
|
||||
{
|
||||
std::swap(adRoot(1),adRoot(2));
|
||||
if (adRoot(0) >= adRoot(1))
|
||||
std::swap(adRoot(0),adRoot(1));
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Matrix, typename Vector>
|
||||
void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals)
|
||||
{
|
||||
typedef typename Matrix::Scalar Scalar;
|
||||
// Scale the matrix so its entries are in [-1,1]. The scaling is applied
|
||||
// only when at least one matrix entry has magnitude larger than 1.
|
||||
|
||||
Scalar scale = mat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff();
|
||||
scale = std::max(scale,Scalar(1));
|
||||
Matrix scaledMat = mat / scale;
|
||||
|
||||
// Compute the eigenvalues
|
||||
// scaledMat.setZero();
|
||||
computeRoots(scaledMat,evals);
|
||||
|
||||
// compute the eigen vectors
|
||||
// here we assume 3 differents eigenvalues
|
||||
|
||||
// "optimized version" which appears to be slower with gcc!
|
||||
// Vector base;
|
||||
// Scalar alpha, beta;
|
||||
// base << scaledMat(1,0) * scaledMat(2,1),
|
||||
// scaledMat(1,0) * scaledMat(2,0),
|
||||
// -scaledMat(1,0) * scaledMat(1,0);
|
||||
// for(int k=0; k<2; ++k)
|
||||
// {
|
||||
// alpha = scaledMat(0,0) - evals(k);
|
||||
// beta = scaledMat(1,1) - evals(k);
|
||||
// evecs.col(k) = (base + Vector(-beta*scaledMat(2,0), -alpha*scaledMat(2,1), alpha*beta)).normalized();
|
||||
// }
|
||||
// evecs.col(2) = evecs.col(0).cross(evecs.col(1)).normalized();
|
||||
|
||||
// naive version
|
||||
Matrix tmp;
|
||||
tmp = scaledMat;
|
||||
tmp.diagonal().array() -= evals(0);
|
||||
evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized();
|
||||
|
||||
tmp = scaledMat;
|
||||
tmp.diagonal().array() -= evals(1);
|
||||
evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized();
|
||||
|
||||
tmp = scaledMat;
|
||||
tmp.diagonal().array() -= evals(2);
|
||||
evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
|
||||
|
||||
// Rescale back to the original size.
|
||||
evals *= scale;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
BenchTimer t;
|
||||
int tries = 10;
|
||||
int rep = 400000;
|
||||
typedef Matrix3f Mat;
|
||||
typedef Vector3f Vec;
|
||||
Mat A = Mat::Random(3,3);
|
||||
A = A.adjoint() * A;
|
||||
|
||||
SelfAdjointEigenSolver<Mat> eig(A);
|
||||
BENCH(t, tries, rep, eig.compute(A));
|
||||
std::cout << "Eigen: " << t.best() << "s\n";
|
||||
|
||||
Mat evecs;
|
||||
Vec evals;
|
||||
BENCH(t, tries, rep, eigen33(A,evecs,evals));
|
||||
std::cout << "Direct: " << t.best() << "s\n\n";
|
||||
|
||||
std::cerr << "Eigenvalue/eigenvector diffs:\n";
|
||||
std::cerr << (evals - eig.eigenvalues()).transpose() << "\n";
|
||||
for(int k=0;k<3;++k)
|
||||
if(evecs.col(k).dot(eig.eigenvectors().col(k))<0)
|
||||
evecs.col(k) = -evecs.col(k);
|
||||
std::cerr << evecs - eig.eigenvectors() << "\n\n";
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user