mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-20 16:47:37 +08:00
RealSchur and EigenSolver: some straightforward renames.
This commit is contained in:
parent
a16a36ecf2
commit
79e1ce6093
@ -95,21 +95,21 @@ template<typename _MatrixType> class EigenSolver
|
||||
* \c float or \c double) and just \c Scalar if #Scalar is
|
||||
* complex.
|
||||
*/
|
||||
typedef std::complex<RealScalar> Complex;
|
||||
typedef std::complex<RealScalar> ComplexScalar;
|
||||
|
||||
/** \brief Type for vector of eigenvalues as returned by eigenvalues().
|
||||
*
|
||||
* This is a column vector with entries of type #Complex.
|
||||
* This is a column vector with entries of type #ComplexScalar.
|
||||
* The length of the vector is the size of \p _MatrixType.
|
||||
*/
|
||||
typedef Matrix<Complex, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> EigenvalueType;
|
||||
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> EigenvalueType;
|
||||
|
||||
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
|
||||
*
|
||||
* This is a square matrix with entries of type #Complex.
|
||||
* This is a square matrix with entries of type #ComplexScalar.
|
||||
* The size is the same as the size of \p _MatrixType.
|
||||
*/
|
||||
typedef Matrix<Complex, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorType;
|
||||
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorType;
|
||||
|
||||
/** \brief Default constructor.
|
||||
*
|
||||
@ -286,15 +286,15 @@ typename EigenSolver<MatrixType>::EigenvectorType EigenSolver<MatrixType>::eigen
|
||||
if (ei_isMuchSmallerThan(ei_abs(ei_imag(m_eivalues.coeff(j))), ei_abs(ei_real(m_eivalues.coeff(j)))))
|
||||
{
|
||||
// we have a real eigen value
|
||||
matV.col(j) = m_eivec.col(j).template cast<Complex>();
|
||||
matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
|
||||
}
|
||||
else
|
||||
{
|
||||
// we have a pair of complex eigen values
|
||||
for (int i=0; i<n; ++i)
|
||||
{
|
||||
matV.coeffRef(i,j) = Complex(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1));
|
||||
matV.coeffRef(i,j+1) = Complex(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
|
||||
matV.coeffRef(i,j) = ComplexScalar(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1));
|
||||
matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
|
||||
}
|
||||
matV.col(j).normalize();
|
||||
matV.col(j+1).normalize();
|
||||
|
@ -47,13 +47,13 @@ template<typename _MatrixType> class RealSchur
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef std::complex<typename NumTraits<Scalar>::Real> Complex;
|
||||
typedef Matrix<Complex, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> EigenvalueType;
|
||||
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
|
||||
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> EigenvalueType;
|
||||
|
||||
/** \brief Constructor; computes Schur decomposition of given matrix. */
|
||||
RealSchur(const MatrixType& matrix)
|
||||
: matH(matrix.rows(),matrix.cols()),
|
||||
m_eivec(matrix.rows(),matrix.cols()),
|
||||
: m_matT(matrix.rows(),matrix.cols()),
|
||||
m_matU(matrix.rows(),matrix.cols()),
|
||||
m_eivalues(matrix.rows()),
|
||||
m_isInitialized(false)
|
||||
{
|
||||
@ -64,14 +64,14 @@ template<typename _MatrixType> class RealSchur
|
||||
const MatrixType& matrixU() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "RealSchur is not initialized.");
|
||||
return m_eivec;
|
||||
return m_matU;
|
||||
}
|
||||
|
||||
/** \brief Returns the quasi-triangular matrix in the Schur decomposition. */
|
||||
const MatrixType& matrixT() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "RealSchur is not initialized.");
|
||||
return matH;
|
||||
return m_matT;
|
||||
}
|
||||
|
||||
/** \brief Returns vector of eigenvalues.
|
||||
@ -88,8 +88,8 @@ template<typename _MatrixType> class RealSchur
|
||||
|
||||
private:
|
||||
|
||||
MatrixType matH;
|
||||
MatrixType m_eivec;
|
||||
MatrixType m_matT;
|
||||
MatrixType m_matU;
|
||||
EigenvalueType m_eivalues;
|
||||
bool m_isInitialized;
|
||||
|
||||
@ -105,8 +105,8 @@ void RealSchur<MatrixType>::compute(const MatrixType& matrix)
|
||||
// Reduce to Hessenberg form
|
||||
// TODO skip Q if skipU = true
|
||||
HessenbergDecomposition<MatrixType> hess(matrix);
|
||||
matH = hess.matrixH();
|
||||
m_eivec = hess.matrixQ();
|
||||
m_matT = hess.matrixH();
|
||||
m_matU = hess.matrixQ();
|
||||
|
||||
// Reduce to Real Schur form
|
||||
hqr2();
|
||||
@ -124,26 +124,25 @@ void RealSchur<MatrixType>::hqr2()
|
||||
// Fortran subroutine in EISPACK.
|
||||
|
||||
// Initialize
|
||||
int nn = m_eivec.cols();
|
||||
int n = nn-1;
|
||||
const int size = m_matU.cols();
|
||||
int n = size-1;
|
||||
const int low = 0;
|
||||
const int high = nn-1;
|
||||
const Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
|
||||
const int high = size-1;
|
||||
Scalar exshift = 0.0;
|
||||
Scalar p=0,q=0,r=0,s=0,z=0,w,x,y;
|
||||
|
||||
// Store roots isolated by balanc and compute matrix norm
|
||||
// FIXME to be efficient the following would requires a triangular reduxion code
|
||||
// Scalar norm = matH.upper().cwiseAbs().sum() + matH.corner(BottomLeft,n,n).diagonal().cwiseAbs().sum();
|
||||
// Scalar norm = m_matT.upper().cwiseAbs().sum() + m_matT.corner(BottomLeft,n,n).diagonal().cwiseAbs().sum();
|
||||
Scalar norm = 0.0;
|
||||
for (int j = 0; j < nn; ++j)
|
||||
for (int j = 0; j < size; ++j)
|
||||
{
|
||||
// FIXME what's the purpose of the following since the condition is always false
|
||||
if ((j < low) || (j > high))
|
||||
{
|
||||
m_eivalues.coeffRef(j) = Complex(matH.coeff(j,j), 0.0);
|
||||
m_eivalues.coeffRef(j) = ComplexScalar(m_matT.coeff(j,j), 0.0);
|
||||
}
|
||||
norm += matH.row(j).segment(std::max(j-1,0), nn-std::max(j-1,0)).cwiseAbs().sum();
|
||||
norm += m_matT.row(j).segment(std::max(j-1,0), size-std::max(j-1,0)).cwiseAbs().sum();
|
||||
}
|
||||
|
||||
// Outer loop over eigenvalue index
|
||||
@ -154,10 +153,10 @@ void RealSchur<MatrixType>::hqr2()
|
||||
int l = n;
|
||||
while (l > low)
|
||||
{
|
||||
s = ei_abs(matH.coeff(l-1,l-1)) + ei_abs(matH.coeff(l,l));
|
||||
s = ei_abs(m_matT.coeff(l-1,l-1)) + ei_abs(m_matT.coeff(l,l));
|
||||
if (s == 0.0)
|
||||
s = norm;
|
||||
if (ei_abs(matH.coeff(l,l-1)) < eps * s)
|
||||
if (ei_abs(m_matT.coeff(l,l-1)) < NumTraits<Scalar>::epsilon() * s)
|
||||
break;
|
||||
l--;
|
||||
}
|
||||
@ -166,20 +165,20 @@ void RealSchur<MatrixType>::hqr2()
|
||||
// One root found
|
||||
if (l == n)
|
||||
{
|
||||
matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
|
||||
m_eivalues.coeffRef(n) = Complex(matH.coeff(n,n), 0.0);
|
||||
m_matT.coeffRef(n,n) = m_matT.coeff(n,n) + exshift;
|
||||
m_eivalues.coeffRef(n) = ComplexScalar(m_matT.coeff(n,n), 0.0);
|
||||
n--;
|
||||
iter = 0;
|
||||
}
|
||||
else if (l == n-1) // Two roots found
|
||||
{
|
||||
w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
|
||||
p = (matH.coeff(n-1,n-1) - matH.coeff(n,n)) * Scalar(0.5);
|
||||
w = m_matT.coeff(n,n-1) * m_matT.coeff(n-1,n);
|
||||
p = (m_matT.coeff(n-1,n-1) - m_matT.coeff(n,n)) * Scalar(0.5);
|
||||
q = p * p + w;
|
||||
z = ei_sqrt(ei_abs(q));
|
||||
matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
|
||||
matH.coeffRef(n-1,n-1) = matH.coeff(n-1,n-1) + exshift;
|
||||
x = matH.coeff(n,n);
|
||||
m_matT.coeffRef(n,n) = m_matT.coeff(n,n) + exshift;
|
||||
m_matT.coeffRef(n-1,n-1) = m_matT.coeff(n-1,n-1) + exshift;
|
||||
x = m_matT.coeff(n,n);
|
||||
|
||||
// Scalar pair
|
||||
if (q >= 0)
|
||||
@ -189,10 +188,10 @@ void RealSchur<MatrixType>::hqr2()
|
||||
else
|
||||
z = p - z;
|
||||
|
||||
m_eivalues.coeffRef(n-1) = Complex(x + z, 0.0);
|
||||
m_eivalues.coeffRef(n) = Complex(z!=0.0 ? x - w / z : m_eivalues.coeff(n-1).real(), 0.0);
|
||||
m_eivalues.coeffRef(n-1) = ComplexScalar(x + z, 0.0);
|
||||
m_eivalues.coeffRef(n) = ComplexScalar(z!=0.0 ? x - w / z : m_eivalues.coeff(n-1).real(), 0.0);
|
||||
|
||||
x = matH.coeff(n,n-1);
|
||||
x = m_matT.coeff(n,n-1);
|
||||
s = ei_abs(x) + ei_abs(z);
|
||||
p = x / s;
|
||||
q = z / s;
|
||||
@ -201,33 +200,33 @@ void RealSchur<MatrixType>::hqr2()
|
||||
q = q / r;
|
||||
|
||||
// Row modification
|
||||
for (int j = n-1; j < nn; ++j)
|
||||
for (int j = n-1; j < size; ++j)
|
||||
{
|
||||
z = matH.coeff(n-1,j);
|
||||
matH.coeffRef(n-1,j) = q * z + p * matH.coeff(n,j);
|
||||
matH.coeffRef(n,j) = q * matH.coeff(n,j) - p * z;
|
||||
z = m_matT.coeff(n-1,j);
|
||||
m_matT.coeffRef(n-1,j) = q * z + p * m_matT.coeff(n,j);
|
||||
m_matT.coeffRef(n,j) = q * m_matT.coeff(n,j) - p * z;
|
||||
}
|
||||
|
||||
// Column modification
|
||||
for (int i = 0; i <= n; ++i)
|
||||
{
|
||||
z = matH.coeff(i,n-1);
|
||||
matH.coeffRef(i,n-1) = q * z + p * matH.coeff(i,n);
|
||||
matH.coeffRef(i,n) = q * matH.coeff(i,n) - p * z;
|
||||
z = m_matT.coeff(i,n-1);
|
||||
m_matT.coeffRef(i,n-1) = q * z + p * m_matT.coeff(i,n);
|
||||
m_matT.coeffRef(i,n) = q * m_matT.coeff(i,n) - p * z;
|
||||
}
|
||||
|
||||
// Accumulate transformations
|
||||
for (int i = low; i <= high; ++i)
|
||||
{
|
||||
z = m_eivec.coeff(i,n-1);
|
||||
m_eivec.coeffRef(i,n-1) = q * z + p * m_eivec.coeff(i,n);
|
||||
m_eivec.coeffRef(i,n) = q * m_eivec.coeff(i,n) - p * z;
|
||||
z = m_matU.coeff(i,n-1);
|
||||
m_matU.coeffRef(i,n-1) = q * z + p * m_matU.coeff(i,n);
|
||||
m_matU.coeffRef(i,n) = q * m_matU.coeff(i,n) - p * z;
|
||||
}
|
||||
}
|
||||
else // Complex pair
|
||||
{
|
||||
m_eivalues.coeffRef(n-1) = Complex(x + p, z);
|
||||
m_eivalues.coeffRef(n) = Complex(x + p, -z);
|
||||
m_eivalues.coeffRef(n-1) = ComplexScalar(x + p, z);
|
||||
m_eivalues.coeffRef(n) = ComplexScalar(x + p, -z);
|
||||
}
|
||||
n = n - 2;
|
||||
iter = 0;
|
||||
@ -235,13 +234,13 @@ void RealSchur<MatrixType>::hqr2()
|
||||
else // No convergence yet
|
||||
{
|
||||
// Form shift
|
||||
x = matH.coeff(n,n);
|
||||
x = m_matT.coeff(n,n);
|
||||
y = 0.0;
|
||||
w = 0.0;
|
||||
if (l < n)
|
||||
{
|
||||
y = matH.coeff(n-1,n-1);
|
||||
w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
|
||||
y = m_matT.coeff(n-1,n-1);
|
||||
w = m_matT.coeff(n,n-1) * m_matT.coeff(n-1,n);
|
||||
}
|
||||
|
||||
// Wilkinson's original ad hoc shift
|
||||
@ -249,8 +248,8 @@ void RealSchur<MatrixType>::hqr2()
|
||||
{
|
||||
exshift += x;
|
||||
for (int i = low; i <= n; ++i)
|
||||
matH.coeffRef(i,i) -= x;
|
||||
s = ei_abs(matH.coeff(n,n-1)) + ei_abs(matH.coeff(n-1,n-2));
|
||||
m_matT.coeffRef(i,i) -= x;
|
||||
s = ei_abs(m_matT.coeff(n,n-1)) + ei_abs(m_matT.coeff(n-1,n-2));
|
||||
x = y = Scalar(0.75) * s;
|
||||
w = Scalar(-0.4375) * s * s;
|
||||
}
|
||||
@ -267,7 +266,7 @@ void RealSchur<MatrixType>::hqr2()
|
||||
s = -s;
|
||||
s = Scalar(x - w / ((y - x) / 2.0 + s));
|
||||
for (int i = low; i <= n; ++i)
|
||||
matH.coeffRef(i,i) -= s;
|
||||
m_matT.coeffRef(i,i) -= s;
|
||||
exshift += s;
|
||||
x = y = w = Scalar(0.964);
|
||||
}
|
||||
@ -279,12 +278,12 @@ void RealSchur<MatrixType>::hqr2()
|
||||
int m = n-2;
|
||||
while (m >= l)
|
||||
{
|
||||
z = matH.coeff(m,m);
|
||||
z = m_matT.coeff(m,m);
|
||||
r = x - z;
|
||||
s = y - z;
|
||||
p = (r * s - w) / matH.coeff(m+1,m) + matH.coeff(m,m+1);
|
||||
q = matH.coeff(m+1,m+1) - z - r - s;
|
||||
r = matH.coeff(m+2,m+1);
|
||||
p = (r * s - w) / m_matT.coeff(m+1,m) + m_matT.coeff(m,m+1);
|
||||
q = m_matT.coeff(m+1,m+1) - z - r - s;
|
||||
r = m_matT.coeff(m+2,m+1);
|
||||
s = ei_abs(p) + ei_abs(q) + ei_abs(r);
|
||||
p = p / s;
|
||||
q = q / s;
|
||||
@ -292,9 +291,9 @@ void RealSchur<MatrixType>::hqr2()
|
||||
if (m == l) {
|
||||
break;
|
||||
}
|
||||
if (ei_abs(matH.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
|
||||
eps * (ei_abs(p) * (ei_abs(matH.coeff(m-1,m-1)) + ei_abs(z) +
|
||||
ei_abs(matH.coeff(m+1,m+1)))))
|
||||
if (ei_abs(m_matT.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
|
||||
NumTraits<Scalar>::epsilon() * (ei_abs(p) * (ei_abs(m_matT.coeff(m-1,m-1)) + ei_abs(z) +
|
||||
ei_abs(m_matT.coeff(m+1,m+1)))))
|
||||
{
|
||||
break;
|
||||
}
|
||||
@ -303,9 +302,9 @@ void RealSchur<MatrixType>::hqr2()
|
||||
|
||||
for (int i = m+2; i <= n; ++i)
|
||||
{
|
||||
matH.coeffRef(i,i-2) = 0.0;
|
||||
m_matT.coeffRef(i,i-2) = 0.0;
|
||||
if (i > m+2)
|
||||
matH.coeffRef(i,i-3) = 0.0;
|
||||
m_matT.coeffRef(i,i-3) = 0.0;
|
||||
}
|
||||
|
||||
// Double QR step involving rows l:n and columns m:n
|
||||
@ -313,9 +312,9 @@ void RealSchur<MatrixType>::hqr2()
|
||||
{
|
||||
int notlast = (k != n-1);
|
||||
if (k != m) {
|
||||
p = matH.coeff(k,k-1);
|
||||
q = matH.coeff(k+1,k-1);
|
||||
r = notlast ? matH.coeff(k+2,k-1) : Scalar(0);
|
||||
p = m_matT.coeff(k,k-1);
|
||||
q = m_matT.coeff(k+1,k-1);
|
||||
r = notlast ? m_matT.coeff(k+2,k-1) : Scalar(0);
|
||||
x = ei_abs(p) + ei_abs(q) + ei_abs(r);
|
||||
if (x != 0.0)
|
||||
{
|
||||
@ -336,9 +335,9 @@ void RealSchur<MatrixType>::hqr2()
|
||||
if (s != 0)
|
||||
{
|
||||
if (k != m)
|
||||
matH.coeffRef(k,k-1) = -s * x;
|
||||
m_matT.coeffRef(k,k-1) = -s * x;
|
||||
else if (l != m)
|
||||
matH.coeffRef(k,k-1) = -matH.coeff(k,k-1);
|
||||
m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
|
||||
|
||||
p = p + s;
|
||||
x = p / s;
|
||||
@ -348,42 +347,42 @@ void RealSchur<MatrixType>::hqr2()
|
||||
r = r / p;
|
||||
|
||||
// Row modification
|
||||
for (int j = k; j < nn; ++j)
|
||||
for (int j = k; j < size; ++j)
|
||||
{
|
||||
p = matH.coeff(k,j) + q * matH.coeff(k+1,j);
|
||||
p = m_matT.coeff(k,j) + q * m_matT.coeff(k+1,j);
|
||||
if (notlast)
|
||||
{
|
||||
p = p + r * matH.coeff(k+2,j);
|
||||
matH.coeffRef(k+2,j) = matH.coeff(k+2,j) - p * z;
|
||||
p = p + r * m_matT.coeff(k+2,j);
|
||||
m_matT.coeffRef(k+2,j) = m_matT.coeff(k+2,j) - p * z;
|
||||
}
|
||||
matH.coeffRef(k,j) = matH.coeff(k,j) - p * x;
|
||||
matH.coeffRef(k+1,j) = matH.coeff(k+1,j) - p * y;
|
||||
m_matT.coeffRef(k,j) = m_matT.coeff(k,j) - p * x;
|
||||
m_matT.coeffRef(k+1,j) = m_matT.coeff(k+1,j) - p * y;
|
||||
}
|
||||
|
||||
// Column modification
|
||||
for (int i = 0; i <= std::min(n,k+3); ++i)
|
||||
{
|
||||
p = x * matH.coeff(i,k) + y * matH.coeff(i,k+1);
|
||||
p = x * m_matT.coeff(i,k) + y * m_matT.coeff(i,k+1);
|
||||
if (notlast)
|
||||
{
|
||||
p = p + z * matH.coeff(i,k+2);
|
||||
matH.coeffRef(i,k+2) = matH.coeff(i,k+2) - p * r;
|
||||
p = p + z * m_matT.coeff(i,k+2);
|
||||
m_matT.coeffRef(i,k+2) = m_matT.coeff(i,k+2) - p * r;
|
||||
}
|
||||
matH.coeffRef(i,k) = matH.coeff(i,k) - p;
|
||||
matH.coeffRef(i,k+1) = matH.coeff(i,k+1) - p * q;
|
||||
m_matT.coeffRef(i,k) = m_matT.coeff(i,k) - p;
|
||||
m_matT.coeffRef(i,k+1) = m_matT.coeff(i,k+1) - p * q;
|
||||
}
|
||||
|
||||
// Accumulate transformations
|
||||
for (int i = low; i <= high; ++i)
|
||||
{
|
||||
p = x * m_eivec.coeff(i,k) + y * m_eivec.coeff(i,k+1);
|
||||
p = x * m_matU.coeff(i,k) + y * m_matU.coeff(i,k+1);
|
||||
if (notlast)
|
||||
{
|
||||
p = p + z * m_eivec.coeff(i,k+2);
|
||||
m_eivec.coeffRef(i,k+2) = m_eivec.coeff(i,k+2) - p * r;
|
||||
p = p + z * m_matU.coeff(i,k+2);
|
||||
m_matU.coeffRef(i,k+2) = m_matU.coeff(i,k+2) - p * r;
|
||||
}
|
||||
m_eivec.coeffRef(i,k) = m_eivec.coeff(i,k) - p;
|
||||
m_eivec.coeffRef(i,k+1) = m_eivec.coeff(i,k+1) - p * q;
|
||||
m_matU.coeffRef(i,k) = m_matU.coeff(i,k) - p;
|
||||
m_matU.coeffRef(i,k+1) = m_matU.coeff(i,k+1) - p * q;
|
||||
}
|
||||
} // (s != 0)
|
||||
} // k loop
|
||||
|
Loading…
x
Reference in New Issue
Block a user