big reorganization in JacobiSVD:

- R-SVD preconditioning now done with meta selectors to avoid compiling useless code
- SVD options now honored, with options to hint "at least as many rows as cols" etc...
- fix compilation in bad cases (rectangular and fixed-size)
- the check for termination is now done on the fly, no more goto (should have done that earlier!)
This commit is contained in:
Benoit Jacob 2009-09-03 02:53:51 -04:00
parent 89557ac41d
commit 7aa6fd3625
4 changed files with 156 additions and 80 deletions

View File

@ -238,6 +238,15 @@ enum {
OnTheRight = 2
};
// options for SVD decomposition
enum {
SkipU = 0x1,
SkipV = 0x2,
AtLeastAsManyRowsAsCols = 0x4,
AtLeastAsManyColsAsRows = 0x8,
Square = AtLeastAsManyRowsAsCols | AtLeastAsManyColsAsRows
};
/* the following could as well be written:
* enum NoChange_t { NoChange };
* but it feels dangerous to disambiguate overloaded functions on enum/integer types.

View File

@ -67,12 +67,10 @@ template<typename MatrixType> class FullPivotingHouseholderQR
* The default constructor is useful in cases in which the user intends to
* perform decompositions via FullPivotingHouseholderQR::compute(const MatrixType&).
*/
FullPivotingHouseholderQR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {}
FullPivotingHouseholderQR() : m_isInitialized(false) {}
FullPivotingHouseholderQR(const MatrixType& matrix)
: m_qr(matrix.rows(), matrix.cols()),
m_hCoeffs(std::min(matrix.rows(),matrix.cols())),
m_isInitialized(false)
: m_isInitialized(false)
{
compute(matrix);
}

View File

@ -33,8 +33,11 @@
* \brief Jacobi SVD decomposition of a square matrix
*
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
* \param ComputeU whether the U matrix should be computed
* \param ComputeV whether the V matrix should be computed
* \param Options a bit field of flags offering the following options: \c SkipU and \c SkipV allow to skip the computation of
* the unitaries \a U and \a V respectively; \c AtLeastAsManyRowsAsCols and \c AtLeastAsManyRowsAsCols allows
* to hint the compiler to only generate the corresponding code paths; \c Square is equivantent to the combination of
* the latter two bits and is useful when you know that the matrix is square. Note that when this information can
* be automatically deduced from the matrix type (e.g. a Matrix3f is always square), Eigen does it for you.
*
* \sa MatrixBase::jacobiSvd()
*/
@ -44,14 +47,14 @@ template<typename MatrixType, unsigned int Options> class JacobiSVD
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
enum {
ComputeU = 1,
ComputeV = 1,
ComputeU = (Options & SkipU) == 0,
ComputeV = (Options & SkipV) == 0,
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
DiagSizeAtCompileTime = EIGEN_ENUM_MIN(RowsAtCompileTime,ColsAtCompileTime),
DiagSizeAtCompileTime = EIGEN_SIZE_MIN(RowsAtCompileTime,ColsAtCompileTime),
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
MaxDiagSizeAtCompileTime = EIGEN_ENUM_MIN(MaxRowsAtCompileTime,MaxColsAtCompileTime),
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN(MaxRowsAtCompileTime,MaxColsAtCompileTime),
MatrixOptions = MatrixType::Options
};
@ -65,9 +68,12 @@ template<typename MatrixType, unsigned int Options> class JacobiSVD
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>,
DummyMatrixType>::ret MatrixVType;
typedef Matrix<RealScalar, DiagSizeAtCompileTime, 1,
Options, MaxDiagSizeAtCompileTime, 1> SingularValuesType;
MatrixOptions, MaxDiagSizeAtCompileTime, 1> SingularValuesType;
typedef Matrix<Scalar, 1, RowsAtCompileTime, MatrixOptions, 1, MaxRowsAtCompileTime> RowType;
typedef Matrix<Scalar, RowsAtCompileTime, 1, MatrixOptions, MaxRowsAtCompileTime, 1> ColType;
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
WorkMatrixType;
public:
@ -92,7 +98,7 @@ template<typename MatrixType, unsigned int Options> class JacobiSVD
return m_singularValues;
}
const MatrixUType& matrixV() const
const MatrixVType& matrixV() const
{
ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
return m_matrixV;
@ -106,12 +112,17 @@ template<typename MatrixType, unsigned int Options> class JacobiSVD
template<typename _MatrixType, unsigned int _Options, bool _IsComplex>
friend struct ei_svd_precondition_2x2_block_to_be_real;
template<typename _MatrixType, unsigned int _Options, bool _PossiblyMoreRowsThanCols>
friend struct ei_svd_precondition_if_more_rows_than_cols;
template<typename _MatrixType, unsigned int _Options, bool _PossiblyMoreRowsThanCols>
friend struct ei_svd_precondition_if_more_cols_than_rows;
};
template<typename MatrixType, unsigned int Options, bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
struct ei_svd_precondition_2x2_block_to_be_real
{
static void run(MatrixType&, JacobiSVD<MatrixType, Options>&, int, int) {}
typedef JacobiSVD<MatrixType, Options> SVD;
static void run(typename SVD::WorkMatrixType&, JacobiSVD<MatrixType, Options>&, int, int) {}
};
template<typename MatrixType, unsigned int Options>
@ -120,9 +131,8 @@ struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options, true>
typedef JacobiSVD<MatrixType, Options> SVD;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
enum { ComputeU = SVD::ComputeU, ComputeV = SVD::ComputeV };
static void run(MatrixType& work_matrix, JacobiSVD<MatrixType, Options>& svd, int p, int q)
static void run(typename SVD::WorkMatrixType& work_matrix, JacobiSVD<MatrixType, Options>& svd, int p, int q)
{
Scalar z;
PlanarRotation<Scalar> rot;
@ -185,10 +195,94 @@ void ei_real_2x2_jacobi_svd(const MatrixType& matrix, int p, int q,
*j_left = rot1 * j_right->transpose();
}
template<typename MatrixType, unsigned int Options,
bool PossiblyMoreRowsThanCols = (Options & AtLeastAsManyColsAsRows) == 0
&& (MatrixType::RowsAtCompileTime==Dynamic
|| MatrixType::RowsAtCompileTime>MatrixType::ColsAtCompileTime)>
struct ei_svd_precondition_if_more_rows_than_cols
{
typedef JacobiSVD<MatrixType, Options> SVD;
static bool run(const MatrixType&, typename SVD::WorkMatrixType&, JacobiSVD<MatrixType, Options>&) { return false; }
};
template<typename MatrixType, unsigned int Options>
struct ei_svd_precondition_if_more_rows_than_cols<MatrixType, Options, true>
{
typedef JacobiSVD<MatrixType, Options> SVD;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
enum { ComputeU = SVD::ComputeU, ComputeV = SVD::ComputeV };
static bool run(const MatrixType& matrix, typename SVD::WorkMatrixType& work_matrix, SVD& svd)
{
int rows = matrix.rows();
int cols = matrix.cols();
int diagSize = cols;
if(rows > cols)
{
FullPivotingHouseholderQR<MatrixType> qr(matrix);
work_matrix = qr.matrixQR().block(0,0,diagSize,diagSize).template triangularView<UpperTriangular>();
if(ComputeU) svd.m_matrixU = qr.matrixQ();
if(ComputeV)
for(int i = 0; i < cols; i++)
svd.m_matrixV.coeffRef(qr.colsPermutation().coeff(i),i) = Scalar(1);
return true;
}
else return false;
}
};
template<typename MatrixType, unsigned int Options,
bool PossiblyMoreColsThanRows = (Options & AtLeastAsManyRowsAsCols) == 0
&& (MatrixType::ColsAtCompileTime==Dynamic
|| MatrixType::ColsAtCompileTime>MatrixType::RowsAtCompileTime)>
struct ei_svd_precondition_if_more_cols_than_rows
{
typedef JacobiSVD<MatrixType, Options> SVD;
static bool run(const MatrixType&, typename SVD::WorkMatrixType&, JacobiSVD<MatrixType, Options>&) { return false; }
};
template<typename MatrixType, unsigned int Options>
struct ei_svd_precondition_if_more_cols_than_rows<MatrixType, Options, true>
{
typedef JacobiSVD<MatrixType, Options> SVD;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
enum {
ComputeU = SVD::ComputeU,
ComputeV = SVD::ComputeV,
RowsAtCompileTime = SVD::RowsAtCompileTime,
ColsAtCompileTime = SVD::ColsAtCompileTime,
MaxRowsAtCompileTime = SVD::MaxRowsAtCompileTime,
MaxColsAtCompileTime = SVD::MaxColsAtCompileTime,
MatrixOptions = SVD::MatrixOptions
};
static bool run(const MatrixType& matrix, typename SVD::WorkMatrixType& work_matrix, SVD& svd)
{
int rows = matrix.rows();
int cols = matrix.cols();
int diagSize = rows;
if(cols > rows)
{
typedef Matrix<Scalar,ColsAtCompileTime,RowsAtCompileTime,
MatrixOptions,MaxColsAtCompileTime,MaxRowsAtCompileTime>
TransposeTypeWithSameStorageOrder;
FullPivotingHouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint());
work_matrix = qr.matrixQR().block(0,0,diagSize,diagSize).template triangularView<UpperTriangular>().adjoint();
if(ComputeV) svd.m_matrixV = qr.matrixQ();
if(ComputeU)
for(int i = 0; i < rows; i++)
svd.m_matrixU.coeffRef(qr.colsPermutation().coeff(i),i) = Scalar(1);
return true;
}
else return false;
}
};
template<typename MatrixType, unsigned int Options>
JacobiSVD<MatrixType, Options>& JacobiSVD<MatrixType, Options>::compute(const MatrixType& matrix)
{
MatrixType work_matrix;
WorkMatrixType work_matrix;
int rows = matrix.rows();
int cols = matrix.cols();
int diagSize = std::min(rows, cols);
@ -197,65 +291,41 @@ JacobiSVD<MatrixType, Options>& JacobiSVD<MatrixType, Options>::compute(const Ma
m_singularValues.resize(diagSize);
const RealScalar precision = 2 * epsilon<Scalar>();
if(rows > cols)
if(!ei_svd_precondition_if_more_rows_than_cols<MatrixType, Options>::run(matrix, work_matrix, *this)
&& !ei_svd_precondition_if_more_cols_than_rows<MatrixType, Options>::run(matrix, work_matrix, *this))
{
FullPivotingHouseholderQR<MatrixType> qr(matrix);
work_matrix = qr.matrixQR().block(0,0,diagSize,diagSize).template triangularView<UpperTriangular>();
if(ComputeU) m_matrixU = qr.matrixQ();
if(ComputeV)
for(int i = 0; i < cols; i++)
m_matrixV.coeffRef(qr.colsPermutation().coeff(i),i) = Scalar(1);
}
else if(rows < cols)
{
FullPivotingHouseholderQR<MatrixType> qr(MatrixType(matrix.adjoint()));
work_matrix = qr.matrixQR().block(0,0,diagSize,diagSize).template triangularView<UpperTriangular>().adjoint();
if(ComputeV) m_matrixV = qr.matrixQ();
if(ComputeU)
for(int i = 0; i < rows; i++)
m_matrixU.coeffRef(qr.colsPermutation().coeff(i),i) = Scalar(1);
}
else
{
work_matrix = matrix;
work_matrix = matrix.block(0,0,diagSize,diagSize);
if(ComputeU) m_matrixU.diagonal().setOnes();
if(ComputeV) m_matrixV.diagonal().setOnes();
}
sweep_again:
for(int p = 1; p < diagSize; ++p)
bool finished = false;
while(!finished)
{
for(int q = 0; q < p; ++q)
finished = true;
for(int p = 1; p < diagSize; ++p)
{
if(std::max(ei_abs(work_matrix.coeff(p,q)),ei_abs(work_matrix.coeff(q,p)))
> std::max(ei_abs(work_matrix.coeff(p,p)),ei_abs(work_matrix.coeff(q,q)))*precision)
for(int q = 0; q < p; ++q)
{
ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options>::run(work_matrix, *this, p, q);
if(std::max(ei_abs(work_matrix.coeff(p,q)),ei_abs(work_matrix.coeff(q,p)))
> std::max(ei_abs(work_matrix.coeff(p,p)),ei_abs(work_matrix.coeff(q,q)))*precision)
{
finished = false;
ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options>::run(work_matrix, *this, p, q);
PlanarRotation<RealScalar> j_left, j_right;
ei_real_2x2_jacobi_svd(work_matrix, p, q, &j_left, &j_right);
PlanarRotation<RealScalar> j_left, j_right;
ei_real_2x2_jacobi_svd(work_matrix, p, q, &j_left, &j_right);
work_matrix.applyOnTheLeft(p,q,j_left);
if(ComputeU) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
work_matrix.applyOnTheLeft(p,q,j_left);
if(ComputeU) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
work_matrix.applyOnTheRight(p,q,j_right);
if(ComputeV) m_matrixV.applyOnTheRight(p,q,j_right);
work_matrix.applyOnTheRight(p,q,j_right);
if(ComputeV) m_matrixV.applyOnTheRight(p,q,j_right);
}
}
}
}
RealScalar biggestOnDiag = work_matrix.diagonal().cwise().abs().maxCoeff();
RealScalar maxAllowedOffDiag = biggestOnDiag * precision;
for(int p = 0; p < diagSize; ++p)
{
for(int q = 0; q < p; ++q)
if(ei_abs(work_matrix.coeff(p,q)) > maxAllowedOffDiag)
goto sweep_again;
for(int q = p+1; q < diagSize; ++q)
if(ei_abs(work_matrix.coeff(p,q)) > maxAllowedOffDiag)
goto sweep_again;
}
for(int i = 0; i < diagSize; ++i)
{
RealScalar a = ei_abs(work_matrix.coeff(i,i));

View File

@ -27,7 +27,7 @@
#include <Eigen/SVD>
#include <Eigen/LU>
template<typename MatrixType> void svd(const MatrixType& m, bool pickrandom = true)
template<typename MatrixType, unsigned int Options> void svd(const MatrixType& m = MatrixType(), bool pickrandom = true)
{
int rows = m.rows();
int cols = m.cols();
@ -48,7 +48,7 @@ template<typename MatrixType> void svd(const MatrixType& m, bool pickrandom = tr
if(pickrandom) a = MatrixType::Random(rows,cols);
else a = m;
JacobiSVD<MatrixType> svd(a);
JacobiSVD<MatrixType,Options> svd(a);
MatrixType sigma = MatrixType::Zero(rows,cols);
sigma.diagonal() = svd.singularValues().template cast<Scalar>();
MatrixUType u = svd.matrixU();
@ -80,28 +80,27 @@ void test_jacobisvd()
Matrix2cd m;
m << 0, 1,
0, 1;
CALL_SUBTEST( svd(m, false) );
CALL_SUBTEST(( svd<Matrix2cd,0>(m, false) ));
m << 1, 0,
1, 0;
CALL_SUBTEST( svd(m, false) );
CALL_SUBTEST(( svd<Matrix2cd,0>(m, false) ));
Matrix2d n;
n << 1, 1,
1, -1;
CALL_SUBTEST( svd(n, false) );
CALL_SUBTEST( svd(Matrix3f()) );
CALL_SUBTEST( svd(Matrix4d()) );
CALL_SUBTEST( svd(MatrixXf(50,50)) );
CALL_SUBTEST( svd(MatrixXcd(14,7)) );
CALL_SUBTEST( svd(MatrixXd(10,50)) );
CALL_SUBTEST( svd(MatrixXcf(3,3)) );
CALL_SUBTEST( svd(MatrixXd(30,30)) );
CALL_SUBTEST(( svd<Matrix2d,0>(n, false) ));
CALL_SUBTEST(( svd<Matrix3f,0>() ));
CALL_SUBTEST(( svd<Matrix4d,Square>() ));
CALL_SUBTEST(( svd<Matrix<float,3,5> , AtLeastAsManyColsAsRows>() ));
CALL_SUBTEST(( svd<Matrix<double,Dynamic,2> , AtLeastAsManyRowsAsCols>(Matrix<double,Dynamic,2>(10,2)) ));
CALL_SUBTEST(( svd<MatrixXf,Square>(MatrixXf(50,50)) ));
CALL_SUBTEST(( svd<MatrixXcd,AtLeastAsManyRowsAsCols>(MatrixXcd(14,7)) ));
}
CALL_SUBTEST( svd(MatrixXf(300,200)) );
CALL_SUBTEST( svd(MatrixXcd(100,150)) );
CALL_SUBTEST(( svd<MatrixXf,0>(MatrixXf(300,200)) ));
CALL_SUBTEST(( svd<MatrixXcd,AtLeastAsManyColsAsRows>(MatrixXcd(100,150)) ));
CALL_SUBTEST( svd_verify_assert<Matrix3f>() );
CALL_SUBTEST( svd_verify_assert<Matrix3d>() );
CALL_SUBTEST( svd_verify_assert<MatrixXf>() );
CALL_SUBTEST( svd_verify_assert<MatrixXd>() );
CALL_SUBTEST(( svd_verify_assert<Matrix3f>() ));
CALL_SUBTEST(( svd_verify_assert<Matrix3d>() ));
CALL_SUBTEST(( svd_verify_assert<MatrixXf>() ));
CALL_SUBTEST(( svd_verify_assert<MatrixXd>() ));
}