Improve plog: 20% speedup for float + handle denormals

This commit is contained in:
Rasmus Munk Larsen 2022-01-05 23:40:31 +00:00
parent a491c7f898
commit 7b5a8b6bc5
2 changed files with 18 additions and 45 deletions

View File

@ -170,33 +170,14 @@ EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
EIGEN_UNUSED
Packet plog_impl_float(const Packet _x)
{
Packet x = _x;
const Packet cst_1 = pset1<Packet>(1.0f);
const Packet cst_neg_half = pset1<Packet>(-0.5f);
// The smallest non denormalized float number.
const Packet cst_min_norm_pos = pset1frombits<Packet>( 0x00800000u);
const Packet cst_minus_inf = pset1frombits<Packet>( 0xff800000u);
const Packet cst_pos_inf = pset1frombits<Packet>( 0x7f800000u);
// Polynomial coefficients.
const Packet cst_cephes_SQRTHF = pset1<Packet>(0.707106781186547524f);
const Packet cst_cephes_log_p0 = pset1<Packet>(7.0376836292E-2f);
const Packet cst_cephes_log_p1 = pset1<Packet>(-1.1514610310E-1f);
const Packet cst_cephes_log_p2 = pset1<Packet>(1.1676998740E-1f);
const Packet cst_cephes_log_p3 = pset1<Packet>(-1.2420140846E-1f);
const Packet cst_cephes_log_p4 = pset1<Packet>(+1.4249322787E-1f);
const Packet cst_cephes_log_p5 = pset1<Packet>(-1.6668057665E-1f);
const Packet cst_cephes_log_p6 = pset1<Packet>(+2.0000714765E-1f);
const Packet cst_cephes_log_p7 = pset1<Packet>(-2.4999993993E-1f);
const Packet cst_cephes_log_p8 = pset1<Packet>(+3.3333331174E-1f);
// Truncate input values to the minimum positive normal.
x = pmax(x, cst_min_norm_pos);
Packet e;
Packet e, x;
// extract significant in the range [0.5,1) and exponent
x = pfrexp(x,e);
x = pfrexp(_x,e);
// part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
// and shift by -1. The values are then centered around 0, which improves
@ -211,24 +192,22 @@ Packet plog_impl_float(const Packet _x)
e = psub(e, pand(cst_1, mask));
x = padd(x, tmp);
Packet x2 = pmul(x, x);
Packet x3 = pmul(x2, x);
// Polynomial coefficients for rational (3,3) r(x) = p(x)/q(x)
// approximating log(1+x) on [sqrt(0.5)-1;sqrt(2)-1].
const Packet cst_p1 = pset1<Packet>(1.0000000190281136f);
const Packet cst_p2 = pset1<Packet>(1.0000000190281063f);
const Packet cst_p3 = pset1<Packet>(0.18256296349849254f);
const Packet cst_q1 = pset1<Packet>(1.4999999999999927f);
const Packet cst_q2 = pset1<Packet>(0.59923249590823520f);
const Packet cst_q3 = pset1<Packet>(0.049616247954120038f);
// Evaluate the polynomial approximant of degree 8 in three parts, probably
// to improve instruction-level parallelism.
Packet y, y1, y2;
y = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1);
y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4);
y2 = pmadd(cst_cephes_log_p6, x, cst_cephes_log_p7);
y = pmadd(y, x, cst_cephes_log_p2);
y1 = pmadd(y1, x, cst_cephes_log_p5);
y2 = pmadd(y2, x, cst_cephes_log_p8);
y = pmadd(y, x3, y1);
y = pmadd(y, x3, y2);
y = pmul(y, x3);
y = pmadd(cst_neg_half, x2, y);
x = padd(x, y);
Packet p = pmadd(x, cst_p3, cst_p2);
p = pmadd(x, p, cst_p1);
p = pmul(x, p);
Packet q = pmadd(x, cst_q3, cst_q2);
q = pmadd(x, q, cst_q1);
q = pmadd(x, q, cst_1);
x = pdiv(p, q);
// Add the logarithm of the exponent back to the result of the interpolation.
if (base2) {
@ -284,8 +263,6 @@ Packet plog_impl_double(const Packet _x)
const Packet cst_1 = pset1<Packet>(1.0);
const Packet cst_neg_half = pset1<Packet>(-0.5);
// The smallest non denormalized double.
const Packet cst_min_norm_pos = pset1frombits<Packet>( static_cast<uint64_t>(0x0010000000000000ull));
const Packet cst_minus_inf = pset1frombits<Packet>( static_cast<uint64_t>(0xfff0000000000000ull));
const Packet cst_pos_inf = pset1frombits<Packet>( static_cast<uint64_t>(0x7ff0000000000000ull));
@ -307,9 +284,6 @@ Packet plog_impl_double(const Packet _x)
const Packet cst_cephes_log_q4 = pset1<Packet>(7.11544750618563894466E1);
const Packet cst_cephes_log_q5 = pset1<Packet>(2.31251620126765340583E1);
// Truncate input values to the minimum positive normal.
x = pmax(x, cst_min_norm_pos);
Packet e;
// extract significant in the range [0.5,1) and exponent
x = pfrexp(x,e);

View File

@ -890,8 +890,7 @@ void packetmath_real() {
data1[0] = std::numeric_limits<Scalar>::denorm_min();
data1[1] = -std::numeric_limits<Scalar>::denorm_min();
h.store(data2, internal::plog(h.load(data1)));
// TODO(rmlarsen): Re-enable.
// VERIFY_IS_EQUAL(std::log(std::numeric_limits<Scalar>::denorm_min()), data2[0]);
VERIFY_IS_APPROX(std::log(std::numeric_limits<Scalar>::denorm_min()), data2[0]);
VERIFY((numext::isnan)(data2[1]));
}
#endif