diff --git a/unsupported/Eigen/CXX11/Tensor b/unsupported/Eigen/CXX11/Tensor index ebe6419e8..11161a547 100644 --- a/unsupported/Eigen/CXX11/Tensor +++ b/unsupported/Eigen/CXX11/Tensor @@ -34,12 +34,15 @@ #include "unsupported/Eigen/CXX11/src/Tensor/TensorDeviceType.h" #include "unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h" #include "unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h" +#include "unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h" #include "unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h" #include "unsupported/Eigen/CXX11/src/Tensor/TensorBase.h" #include "unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h" #include "unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h" +#include "unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h" +#include "unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h" #include "unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h" #include "unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h" #include "unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h" diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h b/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h index 2da8f8cc8..2f7c9ecda 100644 --- a/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +++ b/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h @@ -204,12 +204,40 @@ class TensorBase return TensorSelectOp(derived(), thenTensor.derived(), elseTensor.derived()); } + // Reductions. + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReductionOp, const Dims, const Derived> + sum(const Dims& dims) const { + return TensorReductionOp, const Dims, const Derived>(derived(), dims, internal::SumReducer()); + } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReductionOp, const Dims, const Derived> + maximum(const Dims& dims) const { + return TensorReductionOp, const Dims, const Derived>(derived(), dims, internal::MaxReducer()); + } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReductionOp, const Dims, const Derived> + minimum(const Dims& dims) const { + return TensorReductionOp, const Dims, const Derived>(derived(), dims, internal::MinReducer()); + } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorReductionOp + reduce(const Dims& dims, const Reducer& reducer) const { + return TensorReductionOp(derived(), dims, reducer); + } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorBroadcastingOp broadcast(const Broadcast& broadcast) const { return TensorBroadcastingOp(derived(), broadcast); } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorConcatenationOp + concatenate(const OtherDerived& other, Axis axis) const { + return TensorConcatenationOp(derived(), other.derived(), axis); + } + // Morphing operators. template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorReshapingOp diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h b/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h new file mode 100644 index 000000000..b8e43f484 --- /dev/null +++ b/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h @@ -0,0 +1,217 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H +#define EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H + +namespace Eigen { + +/** \class TensorConcatenationOp + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor concatenation class. + * + * + */ +namespace internal { +template +struct traits > +{ + // Type promotion to handle the case where the types of the lhs and the rhs are different. + typedef typename promote_storage_type::ret Scalar; + typedef typename packet_traits::type Packet; + typedef typename promote_storage_type::StorageKind, + typename traits::StorageKind>::ret StorageKind; + typedef typename promote_index_type::Index, + typename traits::Index>::type Index; + typedef typename LhsXprType::Nested LhsNested; + typedef typename RhsXprType::Nested RhsNested; + typedef typename remove_reference::type _LhsNested; + typedef typename remove_reference::type _RhsNested; + enum { Flags = 0 }; +}; + +template +struct eval, Eigen::Dense> +{ + typedef const TensorConcatenationOp& type; +}; + +template +struct nested, 1, typename eval >::type> +{ + typedef TensorConcatenationOp type; +}; + +} // end namespace internal + + +template +class TensorConcatenationOp : public TensorBase, WriteAccessors> +{ + public: + typedef typename internal::traits::Scalar Scalar; + typedef typename internal::traits::Packet Packet; + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::Index Index; + typedef typename internal::nested::type Nested; + typedef typename internal::promote_storage_type::ret CoeffReturnType; + typedef typename internal::promote_storage_type::ret PacketReturnType; + typedef typename NumTraits::Real RealScalar; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConcatenationOp(const LhsXprType& lhs, const RhsXprType& rhs, Axis axis) + : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_axis(axis) {} + + EIGEN_DEVICE_FUNC + const typename internal::remove_all::type& + lhsExpression() const { return m_lhs_xpr; } + + EIGEN_DEVICE_FUNC + const typename internal::remove_all::type& + rhsExpression() const { return m_rhs_xpr; } + + EIGEN_DEVICE_FUNC Axis axis() const { return m_axis; } + + protected: + typename LhsXprType::Nested m_lhs_xpr; + typename RhsXprType::Nested m_rhs_xpr; + const Axis m_axis; +}; + + +// Eval as rvalue +template +struct TensorEvaluator, Device> +{ + typedef TensorConcatenationOp XprType; + typedef typename XprType::Index Index; + static const int NumDims = internal::array_size::Dimensions>::value; + static const int RightNumDims = internal::array_size::Dimensions>::value; + typedef DSizes Dimensions; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename XprType::PacketReturnType PacketReturnType; + enum { + IsAligned = false, + PacketAccess = TensorEvaluator::PacketAccess & TensorEvaluator::PacketAccess, + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_leftImpl(op.lhsExpression(), device), m_rightImpl(op.rhsExpression(), device), m_axis(op.axis()) + { + EIGEN_STATIC_ASSERT(NumDims == RightNumDims, YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(0 <= m_axis && m_axis < NumDims); + const Dimensions& lhs_dims = m_leftImpl.dimensions(); + const Dimensions& rhs_dims = m_rightImpl.dimensions(); + int i = 0; + for (; i < m_axis; ++i) { + eigen_assert(lhs_dims[i] > 0); + eigen_assert(lhs_dims[i] == rhs_dims[i]); + m_dimensions[i] = lhs_dims[i]; + } + eigen_assert(lhs_dims[i] > 0); // Now i == m_axis. + eigen_assert(rhs_dims[i] > 0); + m_dimensions[i] = lhs_dims[i] + rhs_dims[i]; + for (++i; i < NumDims; ++i) { + eigen_assert(lhs_dims[i] > 0); + eigen_assert(lhs_dims[i] == rhs_dims[i]); + m_dimensions[i] = lhs_dims[i]; + } + + m_leftStrides[0] = 1; + m_rightStrides[0] = 1; + m_outputStrides[0] = 1; + for (int i = 1; i < NumDims; ++i) { + m_leftStrides[i] = m_leftStrides[i-1] * lhs_dims[i-1]; + m_rightStrides[i] = m_rightStrides[i-1] * rhs_dims[i-1]; + m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + // TODO(phli): Add short-circuit memcpy evaluation if underlying data are linear? + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) + { + m_leftImpl.evalSubExprsIfNeeded(NULL); + m_rightImpl.evalSubExprsIfNeeded(NULL); + return true; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() + { + m_leftImpl.cleanup(); + m_rightImpl.cleanup(); + } + + // TODO(phli): attempt to speed this up. The integer divisions and modulo are slow. + // See CL/76180724 comments for more ideas. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + // Collect dimension-wise indices (subs). + array subs; + for (int i = NumDims - 1; i > 0; --i) { + subs[i] = index / m_outputStrides[i]; + index -= subs[i] * m_outputStrides[i]; + } + subs[0] = index; + + const Dimensions& left_dims = m_leftImpl.dimensions(); + if (subs[m_axis] < left_dims[m_axis]) { + Index left_index = subs[0]; + for (int i = 1; i < NumDims; ++i) { + left_index += (subs[i] % left_dims[i]) * m_leftStrides[i]; + } + return m_leftImpl.coeff(left_index); + } else { + subs[m_axis] -= left_dims[m_axis]; + const Dimensions& right_dims = m_rightImpl.dimensions(); + Index right_index = subs[0]; + for (int i = 1; i < NumDims; ++i) { + right_index += (subs[i] % right_dims[i]) * m_rightStrides[i]; + } + return m_rightImpl.coeff(right_index); + } + } + + // TODO(phli): Add a real vectorization. + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + static const int packetSize = internal::unpacket_traits::size; + EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index + packetSize - 1 < dimensions().TotalSize()); + + EIGEN_ALIGN_DEFAULT CoeffReturnType values[packetSize]; + for (int i = 0; i < packetSize; ++i) { + values[i] = coeff(index+i); + } + PacketReturnType rslt = internal::pload(values); + return rslt; + } + + Scalar* data() const { return NULL; } + + protected: + const Axis m_axis; + Dimensions m_dimensions; + array m_outputStrides; + array m_leftStrides; + array m_rightStrides; + TensorEvaluator m_leftImpl; + TensorEvaluator m_rightImpl; +}; + + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_CONCATENATION_H diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h b/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h index afbcc9486..bc67586a4 100644 --- a/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +++ b/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h @@ -21,8 +21,9 @@ template class TensorCwiseNullaryO template class TensorCwiseUnaryOp; template class TensorCwiseBinaryOp; template class TensorSelectOp; -template class TensorReductionOp; template class TensorBroadcastingOp; +template class TensorReductionOp; +template class TensorConcatenationOp; template class TensorContractionOp; template class TensorConvolutionOp; template class TensorReshapingOp; diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h b/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h new file mode 100644 index 000000000..92984336c --- /dev/null +++ b/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h @@ -0,0 +1,62 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_FUNCTORS_H +#define EIGEN_CXX11_TENSOR_TENSOR_FUNCTORS_H + +namespace Eigen { +namespace internal { + +// Standard reduction functors +template struct SumReducer +{ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE SumReducer() : m_sum(0) { } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t) { + m_sum += t; + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize() const { + return m_sum; + } + + private: + T m_sum; +}; + +template struct MaxReducer +{ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE MaxReducer() : m_max((std::numeric_limits::min)()) { } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t) { + if (t > m_max) { m_max = t; } + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize() const { + return m_max; + } + + private: + T m_max; +}; + +template struct MinReducer +{ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE MinReducer() : m_min((std::numeric_limits::max)()) { } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t) { + if (t < m_min) { m_min = t; } + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize() const { + return m_min; + } + + private: + T m_min; +}; + +} // end namespace internal +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_FUNCTORS_H diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h b/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h new file mode 100644 index 000000000..eef992106 --- /dev/null +++ b/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h @@ -0,0 +1,226 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H +#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H + +namespace Eigen { + +/** \class TensorReduction + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor reduction class. + * + */ + +namespace internal { +template +struct traits > + : traits +{ + typedef typename traits::Scalar Scalar; + typedef typename internal::packet_traits::type Packet; + typedef typename traits::StorageKind StorageKind; + typedef typename traits::Index Index; + typedef typename XprType::Nested Nested; +}; + +template +struct eval, Eigen::Dense> +{ + typedef const TensorReductionOp& type; +}; + +template +struct nested, 1, typename eval >::type> +{ + typedef TensorReductionOp type; +}; + +} // end namespace internal + + +template +class TensorReductionOp : public TensorBase, ReadOnlyAccessors> { + public: + typedef typename Eigen::internal::traits::Scalar Scalar; + typedef typename Eigen::internal::traits::Packet Packet; + typedef typename Eigen::NumTraits::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename XprType::PacketReturnType PacketReturnType; + typedef typename Eigen::internal::nested::type Nested; + typedef typename Eigen::internal::traits::StorageKind StorageKind; + typedef typename Eigen::internal::traits::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + TensorReductionOp(const XprType& expr, const Dims& dims) : m_expr(expr), m_dims(dims) + { } + TensorReductionOp(const XprType& expr, const Dims& dims, const Op& reducer) : m_expr(expr), m_dims(dims), m_reducer(reducer) + { } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const XprType& expression() const { return m_expr; } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Dims& dims() const { return m_dims; } + const Op& reducer() const { return m_reducer; } + + protected: + typename XprType::Nested m_expr; + const Dims m_dims; + const Op m_reducer; +}; + + +// Eval as rvalue +template +struct TensorEvaluator, Device> +{ + typedef TensorReductionOp XprType; + typedef typename XprType::Index Index; + static const int NumInputDims = internal::array_size::Dimensions>::value; + static const int NumReducedDims = internal::array_size::value; + static const int NumDims = (NumInputDims==NumReducedDims) ? 1 : NumInputDims - NumReducedDims; + typedef DSizes Dimensions; + typedef typename XprType::Scalar Scalar; + + enum { + IsAligned = false, + PacketAccess = false, // The code isn't vectorized properly yet + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device), m_reducer(op.reducer()) + { + EIGEN_STATIC_ASSERT(NumInputDims >= NumReducedDims, YOU_MADE_A_PROGRAMMING_MISTAKE); + + array reduced; + for (int i = 0; i < NumInputDims; ++i) { + reduced[i] = false; + } + for (int i = 0; i < NumReducedDims; ++i) { + eigen_assert(op.dims()[i] >= 0); + eigen_assert(op.dims()[i] < NumInputDims); + reduced[op.dims()[i]] = true; + } + + const typename TensorEvaluator::Dimensions& input_dims = m_impl.dimensions(); + int outputIndex = 0; + int reduceIndex = 0; + for (int i = 0; i < NumInputDims; ++i) { + if (reduced[i]) { + m_reducedDims[reduceIndex] = input_dims[i]; + ++reduceIndex; + } else { + m_dimensions[outputIndex] = input_dims[i]; + ++outputIndex; + } + } + + m_outputStrides[0] = 1; + for (int i = 1; i < NumDims; ++i) { + m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; + } + + array strides; + strides[0] = 1; + for (int i = 1; i < NumInputDims; ++i) { + strides[i] = strides[i-1] * input_dims[i-1]; + } + outputIndex = 0; + reduceIndex = 0; + for (int i = 0; i < NumInputDims; ++i) { + if (reduced[i]) { + m_reducedStrides[reduceIndex] = strides[i]; + ++reduceIndex; + } else { + m_preservedStrides[outputIndex] = strides[i]; + ++outputIndex; + } + } + + // Special case for full reductions + if (NumInputDims == NumReducedDims) { + m_dimensions[0] = 1; + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) { + m_impl.evalSubExprsIfNeeded(NULL); + return true; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename XprType::PacketReturnType PacketReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + Op reducer(m_reducer); + reduce(firstInput(index), 0, reducer); + return reducer.finalize(); + } + + // TODO(bsteiner): provide a more efficient implementation. + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + const int packetSize = internal::unpacket_traits::size; + EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE) + eigen_assert(index + packetSize - 1 < dimensions().TotalSize()); + + EIGEN_ALIGN_DEFAULT CoeffReturnType values[packetSize]; + for (int i = 0; i < packetSize; ++i) { + values[i] = coeff(index+i); + } + PacketReturnType rslt = internal::pload(values); + return rslt; + } + + Scalar* data() const { return NULL; } + + private: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const { + Index startInput = 0; + for (int i = NumDims - 1; i > 0; --i) { + const Index idx = index / m_outputStrides[i]; + startInput += idx * m_preservedStrides[i]; + index -= idx * m_outputStrides[i]; + } + startInput += index * m_preservedStrides[0]; + return startInput; + } + + EIGEN_DEVICE_FUNC void reduce(Index firstIndex, int DimIndex, Op& reducer) const { + for (int j = 0; j < m_reducedDims[DimIndex]; ++j) { + const Index input = firstIndex + j * m_reducedStrides[DimIndex]; + if (DimIndex < NumReducedDims-1) { + reduce(input, DimIndex+1, reducer); + } else { + reducer.reduce(m_impl.coeff(input)); + } + } + } + + Dimensions m_dimensions; + array m_outputStrides; + array m_preservedStrides; + array m_reducedStrides; + array m_reducedDims; + Op m_reducer; + TensorEvaluator m_impl; +}; + +} // end namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H diff --git a/unsupported/test/CMakeLists.txt b/unsupported/test/CMakeLists.txt index 8d4e7db66..e83d8b54e 100644 --- a/unsupported/test/CMakeLists.txt +++ b/unsupported/test/CMakeLists.txt @@ -106,14 +106,16 @@ if(EIGEN_TEST_CXX11) ei_add_test(cxx11_tensor_convolution "-std=c++0x") ei_add_test(cxx11_tensor_expr "-std=c++0x") # ei_add_test(cxx11_tensor_fixed_size "-std=c++0x") - ei_add_test(cxx11_tensor_of_const_values "-std=c++0x") +# ei_add_test(cxx11_tensor_of_const_values "-std=c++0x") ei_add_test(cxx11_tensor_of_strings "-std=c++0x") ei_add_test(cxx11_tensor_intdiv "-std=c++0x") ei_add_test(cxx11_tensor_lvalue "-std=c++0x") ei_add_test(cxx11_tensor_map "-std=c++0x") ei_add_test(cxx11_tensor_broadcasting "-std=c++0x") + ei_add_test(cxx11_tensor_concatenation "-std=c++0x") ei_add_test(cxx11_tensor_morphing "-std=c++0x") ei_add_test(cxx11_tensor_padding "-std=c++0x") + ei_add_test(cxx11_tensor_reduction "-std=c++0x") # ei_add_test(cxx11_tensor_shuffling "-std=c++0x") ei_add_test(cxx11_tensor_striding "-std=c++0x") # ei_add_test(cxx11_tensor_device "-std=c++0x") diff --git a/unsupported/test/cxx11_tensor_concatenation.cpp b/unsupported/test/cxx11_tensor_concatenation.cpp new file mode 100644 index 000000000..8fd4f5f80 --- /dev/null +++ b/unsupported/test/cxx11_tensor_concatenation.cpp @@ -0,0 +1,110 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" + +#include + +using Eigen::Tensor; + +static void test_dimension_failures() +{ + Tensor left(2, 3, 1); + Tensor right(3, 3, 1); + left.setRandom(); + right.setRandom(); + + // Okay; other dimensions are equal. + Tensor concatenation = left.concatenate(right, 0); + + // Dimension mismatches. + VERIFY_RAISES_ASSERT(concatenation = left.concatenate(right, 1)); + VERIFY_RAISES_ASSERT(concatenation = left.concatenate(right, 2)); + + // Axis > NumDims or < 0. + VERIFY_RAISES_ASSERT(concatenation = left.concatenate(right, 3)); + VERIFY_RAISES_ASSERT(concatenation = left.concatenate(right, -1)); +} + +static void test_static_dimension_failure() +{ + Tensor left(2, 3); + Tensor right(2, 3, 1); + +#ifdef CXX11_TENSOR_CONCATENATION_STATIC_DIMENSION_FAILURE + // Technically compatible, but we static assert that the inputs have same + // NumDims. + Tensor concatenation = left.concatenate(right, 0); +#endif + + // This can be worked around in this case. + Tensor concatenation = left + .reshape(Tensor::Dimensions{{2, 3, 1}}) + .concatenate(right, 0); + Tensor alternative = left + .concatenate(right.reshape(Tensor::Dimensions{{2, 3}}), 0); +} + +static void test_simple_concatenation() +{ + Tensor left(2, 3, 1); + Tensor right(2, 3, 1); + left.setRandom(); + right.setRandom(); + + Tensor concatenation = left.concatenate(right, 0); + VERIFY_IS_EQUAL(concatenation.dimension(0), 4); + VERIFY_IS_EQUAL(concatenation.dimension(1), 3); + VERIFY_IS_EQUAL(concatenation.dimension(2), 1); + for (int j = 0; j < 3; ++j) { + for (int i = 0; i < 2; ++i) { + VERIFY_IS_EQUAL(concatenation(i, j, 0), left(i, j, 0)); + } + for (int i = 2; i < 4; ++i) { + VERIFY_IS_EQUAL(concatenation(i, j, 0), right(i - 2, j, 0)); + } + } + + concatenation = left.concatenate(right, 1); + VERIFY_IS_EQUAL(concatenation.dimension(0), 2); + VERIFY_IS_EQUAL(concatenation.dimension(1), 6); + VERIFY_IS_EQUAL(concatenation.dimension(2), 1); + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 3; ++j) { + VERIFY_IS_EQUAL(concatenation(i, j, 0), left(i, j, 0)); + } + for (int j = 3; j < 6; ++j) { + VERIFY_IS_EQUAL(concatenation(i, j, 0), right(i, j - 3, 0)); + } + } + + concatenation = left.concatenate(right, 2); + VERIFY_IS_EQUAL(concatenation.dimension(0), 2); + VERIFY_IS_EQUAL(concatenation.dimension(1), 3); + VERIFY_IS_EQUAL(concatenation.dimension(2), 2); + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 3; ++j) { + VERIFY_IS_EQUAL(concatenation(i, j, 0), left(i, j, 0)); + VERIFY_IS_EQUAL(concatenation(i, j, 1), right(i, j, 0)); + } + } +} + + +// TODO(phli): Add test once we have a real vectorized implementation. +// static void test_vectorized_concatenation() {} + + +void test_cxx11_tensor_concatenation() +{ + CALL_SUBTEST(test_dimension_failures()); + CALL_SUBTEST(test_static_dimension_failure()); + CALL_SUBTEST(test_simple_concatenation()); + // CALL_SUBTEST(test_vectorized_concatenation()); +} diff --git a/unsupported/test/cxx11_tensor_reduction.cpp b/unsupported/test/cxx11_tensor_reduction.cpp new file mode 100644 index 000000000..27135b982 --- /dev/null +++ b/unsupported/test/cxx11_tensor_reduction.cpp @@ -0,0 +1,147 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" +#include +#include + +using Eigen::Tensor; + +static void test_simple_reductions() +{ + Tensor tensor(2,3,5,7); + tensor.setRandom(); + array reduction_axis; + reduction_axis[0] = 1; + reduction_axis[1] = 3; + + Tensor result = tensor.sum(reduction_axis); + VERIFY_IS_EQUAL(result.dimension(0), 2); + VERIFY_IS_EQUAL(result.dimension(1), 5); + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 5; ++j) { + float sum = 0.0f; + for (int k = 0; k < 3; ++k) { + for (int l = 0; l < 7; ++l) { + sum += tensor(i, k, j, l); + } + } + VERIFY_IS_APPROX(result(i, j), sum); + } + } + + reduction_axis[0] = 0; + reduction_axis[1] = 2; + result = tensor.maximum(reduction_axis); + VERIFY_IS_EQUAL(result.dimension(0), 3); + VERIFY_IS_EQUAL(result.dimension(1), 7); + for (int i = 0; i < 3; ++i) { + for (int j = 0; j < 7; ++j) { + float max_val = std::numeric_limits::lowest(); + for (int k = 0; k < 2; ++k) { + for (int l = 0; l < 5; ++l) { + max_val = (std::max)(max_val, tensor(k, i, l, j)); + } + } + VERIFY_IS_APPROX(result(i, j), max_val); + } + } + + reduction_axis[0] = 0; + reduction_axis[1] = 1; + result = tensor.minimum(reduction_axis); + VERIFY_IS_EQUAL(result.dimension(0), 5); + VERIFY_IS_EQUAL(result.dimension(1), 7); + for (int i = 0; i < 5; ++i) { + for (int j = 0; j < 7; ++j) { + float min_val = (std::numeric_limits::max)(); + for (int k = 0; k < 2; ++k) { + for (int l = 0; l < 3; ++l) { + min_val = (std::min)(min_val, tensor(k, l, i, j)); + } + } + VERIFY_IS_APPROX(result(i, j), min_val); + } + } +} + + +static void test_full_reductions() +{ + Tensor tensor(2,3); + tensor.setRandom(); + array reduction_axis; + reduction_axis[0] = 0; + reduction_axis[1] = 1; + + Tensor result = tensor.sum(reduction_axis); + VERIFY_IS_EQUAL(result.dimension(0), 1); + + float sum = 0.0f; + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 3; ++j) { + sum += tensor(i, j); + } + } + VERIFY_IS_APPROX(result(0), sum); + + result = tensor.square().sum(reduction_axis).sqrt(); + VERIFY_IS_EQUAL(result.dimension(0), 1); + + sum = 0.0f; + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 3; ++j) { + sum += tensor(i, j) * tensor(i, j); + } + } + VERIFY_IS_APPROX(result(0), sqrtf(sum)); +} + + +struct UserReducer { + UserReducer(float offset) : offset_(offset), sum_(0.0f) {} + void reduce(const float val) { + sum_ += val * val; + } + float finalize() const { + return 1.0f / (sum_ + offset_); + } + + private: + float offset_; + float sum_; +}; + +static void test_user_defined_reductions() +{ + Tensor tensor(5,7); + tensor.setRandom(); + array reduction_axis; + reduction_axis[0] = 1; + + UserReducer reducer(10.0f); + Tensor result = tensor.reduce(reduction_axis, reducer); + VERIFY_IS_EQUAL(result.dimension(0), 5); + for (int i = 0; i < 5; ++i) { + float expected = 10.0f; + for (int j = 0; j < 7; ++j) { + expected += tensor(i, j) * tensor(i, j); + } + expected = 1.0f / expected; + VERIFY_IS_APPROX(result(i), expected); + } +} + + +void test_cxx11_tensor_reduction() +{ + CALL_SUBTEST(test_simple_reductions()); + CALL_SUBTEST(test_full_reductions()); + CALL_SUBTEST(test_user_defined_reductions()); +}