mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
Migrate JacobiSVD to Solver
This commit is contained in:
parent
082f7ddc37
commit
7eefdb948c
@ -702,8 +702,8 @@ struct image_retval<FullPivLU<_MatrixType> >
|
|||||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||||
template<typename _MatrixType>
|
template<typename _MatrixType>
|
||||||
template<typename RhsType, typename DstType>
|
template<typename RhsType, typename DstType>
|
||||||
void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const {
|
void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
||||||
|
{
|
||||||
/* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
|
/* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
|
||||||
* So we proceed as follows:
|
* So we proceed as follows:
|
||||||
* Step 1: compute c = P * rhs.
|
* Step 1: compute c = P * rhs.
|
||||||
|
@ -653,6 +653,16 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||||||
* \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
|
* \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
|
||||||
* In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
|
* In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
|
||||||
*/
|
*/
|
||||||
|
#ifdef EIGEN_TEST_EVALUATORS
|
||||||
|
template<typename Rhs>
|
||||||
|
inline const Solve<JacobiSVD, Rhs>
|
||||||
|
solve(const MatrixBase<Rhs>& b) const
|
||||||
|
{
|
||||||
|
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||||
|
eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
|
||||||
|
return Solve<JacobiSVD, Rhs>(*this, b.derived());
|
||||||
|
}
|
||||||
|
#else
|
||||||
template<typename Rhs>
|
template<typename Rhs>
|
||||||
inline const internal::solve_retval<JacobiSVD, Rhs>
|
inline const internal::solve_retval<JacobiSVD, Rhs>
|
||||||
solve(const MatrixBase<Rhs>& b) const
|
solve(const MatrixBase<Rhs>& b) const
|
||||||
@ -661,6 +671,7 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||||||
eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
|
eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
|
||||||
return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
|
return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
/** \returns the number of singular values that are not exactly 0 */
|
/** \returns the number of singular values that are not exactly 0 */
|
||||||
Index nonzeroSingularValues() const
|
Index nonzeroSingularValues() const
|
||||||
@ -734,6 +745,12 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||||||
|
|
||||||
inline Index rows() const { return m_rows; }
|
inline Index rows() const { return m_rows; }
|
||||||
inline Index cols() const { return m_cols; }
|
inline Index cols() const { return m_cols; }
|
||||||
|
|
||||||
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||||
|
template<typename RhsType, typename DstType>
|
||||||
|
EIGEN_DEVICE_FUNC
|
||||||
|
void _solve_impl(const RhsType &rhs, DstType &dst) const;
|
||||||
|
#endif
|
||||||
|
|
||||||
private:
|
private:
|
||||||
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
||||||
@ -912,7 +929,27 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||||
|
template<typename _MatrixType, int QRPreconditioner>
|
||||||
|
template<typename RhsType, typename DstType>
|
||||||
|
void JacobiSVD<_MatrixType,QRPreconditioner>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
||||||
|
{
|
||||||
|
eigen_assert(rhs.rows() == rows());
|
||||||
|
|
||||||
|
// A = U S V^*
|
||||||
|
// So A^{-1} = V S^{-1} U^*
|
||||||
|
|
||||||
|
Matrix<Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
|
||||||
|
Index l_rank = rank();
|
||||||
|
|
||||||
|
tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs;
|
||||||
|
tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
|
||||||
|
dst = m_matrixV.leftCols(l_rank) * tmp;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
namespace internal {
|
namespace internal {
|
||||||
|
#ifndef EIGEN_TEST_EVALUATORS
|
||||||
template<typename _MatrixType, int QRPreconditioner, typename Rhs>
|
template<typename _MatrixType, int QRPreconditioner, typename Rhs>
|
||||||
struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
||||||
: solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
: solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
||||||
@ -922,19 +959,10 @@ struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
|||||||
|
|
||||||
template<typename Dest> void evalTo(Dest& dst) const
|
template<typename Dest> void evalTo(Dest& dst) const
|
||||||
{
|
{
|
||||||
eigen_assert(rhs().rows() == dec().rows());
|
dec()._solve_impl(rhs(), dst);
|
||||||
|
|
||||||
// A = U S V^*
|
|
||||||
// So A^{-1} = V S^{-1} U^*
|
|
||||||
|
|
||||||
Matrix<Scalar, Dynamic, Rhs::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime> tmp;
|
|
||||||
Index rank = dec().rank();
|
|
||||||
|
|
||||||
tmp.noalias() = dec().matrixU().leftCols(rank).adjoint() * rhs();
|
|
||||||
tmp = dec().singularValues().head(rank).asDiagonal().inverse() * tmp;
|
|
||||||
dst = dec().matrixV().leftCols(rank) * tmp;
|
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
#endif
|
||||||
} // end namespace internal
|
} // end namespace internal
|
||||||
|
|
||||||
#ifndef __CUDACC__
|
#ifndef __CUDACC__
|
||||||
|
Loading…
x
Reference in New Issue
Block a user