mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-08 09:49:03 +08:00
SimplicialCholesky: avoid multiple twisting of the same matrix when calling compute()
This commit is contained in:
parent
97cdf6ce9e
commit
7f63169f09
@ -104,7 +104,7 @@ class SimplicialCholeskyBase
|
||||
SimplicialCholeskyBase(const MatrixType& matrix)
|
||||
: m_info(Success), m_isInitialized(false), m_shiftOffset(0), m_shiftScale(1)
|
||||
{
|
||||
compute(matrix);
|
||||
derived().compute(matrix);
|
||||
}
|
||||
|
||||
~SimplicialCholeskyBase()
|
||||
@ -128,14 +128,6 @@ class SimplicialCholeskyBase
|
||||
return m_info;
|
||||
}
|
||||
|
||||
/** Computes the sparse Cholesky decomposition of \a matrix */
|
||||
Derived& compute(const MatrixType& matrix)
|
||||
{
|
||||
derived().analyzePattern(matrix);
|
||||
derived().factorize(matrix);
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
*
|
||||
* \sa compute()
|
||||
@ -258,10 +250,42 @@ class SimplicialCholeskyBase
|
||||
|
||||
protected:
|
||||
|
||||
/** Computes the sparse Cholesky decomposition of \a matrix */
|
||||
template<bool DoLDLT>
|
||||
void factorize(const MatrixType& a);
|
||||
void compute(const MatrixType& matrix)
|
||||
{
|
||||
eigen_assert(matrix.rows()==matrix.cols());
|
||||
Index size = matrix.cols();
|
||||
CholMatrixType ap(size,size);
|
||||
ordering(matrix, ap);
|
||||
analyzePattern_preordered(ap, DoLDLT);
|
||||
factorize_preordered<DoLDLT>(ap);
|
||||
}
|
||||
|
||||
void analyzePattern(const MatrixType& a, bool doLDLT);
|
||||
template<bool DoLDLT>
|
||||
void factorize(const MatrixType& a)
|
||||
{
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
int size = a.cols();
|
||||
CholMatrixType ap(size,size);
|
||||
ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_Pinv);
|
||||
factorize_preordered<DoLDLT>(ap);
|
||||
}
|
||||
|
||||
template<bool DoLDLT>
|
||||
void factorize_preordered(const CholMatrixType& a);
|
||||
|
||||
void analyzePattern(const MatrixType& a, bool doLDLT)
|
||||
{
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
int size = a.cols();
|
||||
CholMatrixType ap(size,size);
|
||||
ordering(a, ap);
|
||||
analyzePattern_preordered(ap,doLDLT);
|
||||
}
|
||||
void analyzePattern_preordered(const CholMatrixType& a, bool doLDLT);
|
||||
|
||||
void ordering(const MatrixType& a, CholMatrixType& ap);
|
||||
|
||||
/** keeps off-diagonal entries; drops diagonal entries */
|
||||
struct keep_diag {
|
||||
@ -375,6 +399,13 @@ public:
|
||||
return Traits::getU(Base::m_matrix);
|
||||
}
|
||||
|
||||
/** Computes the sparse Cholesky decomposition of \a matrix */
|
||||
SimplicialLLT compute(const MatrixType& matrix)
|
||||
{
|
||||
Base::template compute<false>(matrix);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Performs a symbolic decomposition on the sparcity of \a matrix.
|
||||
*
|
||||
* This function is particularly useful when solving for several problems having the same structure.
|
||||
@ -459,6 +490,13 @@ public:
|
||||
return Traits::getU(Base::m_matrix);
|
||||
}
|
||||
|
||||
/** Computes the sparse Cholesky decomposition of \a matrix */
|
||||
SimplicialLDLT compute(const MatrixType& matrix)
|
||||
{
|
||||
Base::template compute<true>(matrix);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Performs a symbolic decomposition on the sparcity of \a matrix.
|
||||
*
|
||||
* This function is particularly useful when solving for several problems having the same structure.
|
||||
@ -515,7 +553,7 @@ public:
|
||||
SimplicialCholesky(const MatrixType& matrix)
|
||||
: Base(), m_LDLT(true)
|
||||
{
|
||||
Base::compute(matrix);
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
SimplicialCholesky& setMode(SimplicialCholeskyMode mode)
|
||||
@ -544,6 +582,16 @@ public:
|
||||
return Base::m_matrix;
|
||||
}
|
||||
|
||||
/** Computes the sparse Cholesky decomposition of \a matrix */
|
||||
SimplicialCholesky compute(const MatrixType& matrix)
|
||||
{
|
||||
if(m_LDLT)
|
||||
Base::template compute<true>(matrix);
|
||||
else
|
||||
Base::template compute<false>(matrix);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Performs a symbolic decomposition on the sparcity of \a matrix.
|
||||
*
|
||||
* This function is particularly useful when solving for several problems having the same structure.
|
||||
@ -625,22 +673,17 @@ public:
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
void SimplicialCholeskyBase<Derived>::analyzePattern(const MatrixType& a, bool doLDLT)
|
||||
void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, CholMatrixType& ap)
|
||||
{
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
m_matrix.resize(size, size);
|
||||
m_parent.resize(size);
|
||||
m_nonZerosPerCol.resize(size);
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(Index, tags, size, 0);
|
||||
|
||||
// TODO allows to configure the permutation
|
||||
{
|
||||
CholMatrixType C;
|
||||
C = a.template selfadjointView<UpLo>();
|
||||
// remove diagonal entries:
|
||||
C.prune(keep_diag());
|
||||
// seems not to be needed
|
||||
// C.prune(keep_diag());
|
||||
internal::minimum_degree_ordering(C, m_P);
|
||||
}
|
||||
|
||||
@ -649,8 +692,19 @@ void SimplicialCholeskyBase<Derived>::analyzePattern(const MatrixType& a, bool d
|
||||
else
|
||||
m_Pinv.resize(0);
|
||||
|
||||
SparseMatrix<Scalar,ColMajor,Index> ap(size,size);
|
||||
ap.resize(size,size);
|
||||
ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_Pinv);
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
void SimplicialCholeskyBase<Derived>::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT)
|
||||
{
|
||||
const Index size = ap.rows();
|
||||
m_matrix.resize(size, size);
|
||||
m_parent.resize(size);
|
||||
m_nonZerosPerCol.resize(size);
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(Index, tags, size, 0);
|
||||
|
||||
for(Index k = 0; k < size; ++k)
|
||||
{
|
||||
@ -693,11 +747,11 @@ void SimplicialCholeskyBase<Derived>::analyzePattern(const MatrixType& a, bool d
|
||||
|
||||
template<typename Derived>
|
||||
template<bool DoLDLT>
|
||||
void SimplicialCholeskyBase<Derived>::factorize(const MatrixType& a)
|
||||
void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType& ap)
|
||||
{
|
||||
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
eigen_assert(ap.rows()==ap.cols());
|
||||
const Index size = ap.rows();
|
||||
eigen_assert(m_parent.size()==size);
|
||||
eigen_assert(m_nonZerosPerCol.size()==size);
|
||||
|
||||
@ -709,9 +763,6 @@ void SimplicialCholeskyBase<Derived>::factorize(const MatrixType& a)
|
||||
ei_declare_aligned_stack_constructed_variable(Index, pattern, size, 0);
|
||||
ei_declare_aligned_stack_constructed_variable(Index, tags, size, 0);
|
||||
|
||||
SparseMatrix<Scalar,ColMajor,Index> ap(size,size);
|
||||
ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_Pinv);
|
||||
|
||||
bool ok = true;
|
||||
m_diag.resize(DoLDLT ? size : 0);
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user