finish to merge Array into Core:

- mv Array/* into Core/
- merge Functors.h files, and move Norms.h into Dot.h
This commit is contained in:
Gael Guennebaud 2010-06-19 23:36:38 +02:00
parent 575ac5409c
commit 7fd8418b19
18 changed files with 317 additions and 374 deletions

View File

@ -22,7 +22,6 @@ namespace Eigen {
*/
#include "src/misc/Solve.h"
#include "src/Array/Functors.h"
#include "src/Cholesky/LLT.h"
#include "src/Cholesky/LDLT.h"

View File

@ -287,21 +287,19 @@ using std::size_t;
#include "src/Core/products/TriangularSolverMatrix.h"
#include "src/Core/BandMatrix.h"
#include "src/Array/Functors.h"
#include "src/Array/BooleanRedux.h"
#include "src/Array/Select.h"
#include "src/Array/VectorwiseOp.h"
#include "src/Array/Random.h"
#include "src/Array/Norms.h"
#include "src/Array/Replicate.h"
#include "src/Array/Reverse.h"
#include "src/Array/ArrayBase.h"
#include "src/Array/ArrayWrapper.h"
#include "src/Array/Array.h"
#include "src/Core/BooleanRedux.h"
#include "src/Core/Select.h"
#include "src/Core/VectorwiseOp.h"
#include "src/Core/Random.h"
#include "src/Core/Replicate.h"
#include "src/Core/Reverse.h"
#include "src/Core/ArrayBase.h"
#include "src/Core/ArrayWrapper.h"
#include "src/Core/Array.h"
} // namespace Eigen
#include "src/Array/GlobalFunctions.h"
#include "src/Core/GlobalFunctions.h"
#include "src/Core/util/EnableMSVCWarnings.h"

View File

@ -1,6 +0,0 @@
FILE(GLOB Eigen_Array_SRCS "*.h")
INSTALL(FILES
${Eigen_Array_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Array COMPONENT Devel
)

View File

@ -1,270 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ARRAY_FUNCTORS_H
#define EIGEN_ARRAY_FUNCTORS_H
/** \internal
* \brief Template functor to add a scalar to a fixed other one
* \sa class CwiseUnaryOp, Array::operator+
*/
/* If you wonder why doing the ei_pset1() in packetOp() is an optimization check ei_scalar_multiple_op */
template<typename Scalar>
struct ei_scalar_add_op {
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
// FIXME default copy constructors seems bugged with std::complex<>
inline ei_scalar_add_op(const ei_scalar_add_op& other) : m_other(other.m_other) { }
inline ei_scalar_add_op(const Scalar& other) : m_other(other) { }
inline Scalar operator() (const Scalar& a) const { return a + m_other; }
inline const PacketScalar packetOp(const PacketScalar& a) const
{ return ei_padd(a, ei_pset1(m_other)); }
const Scalar m_other;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_add_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = ei_packet_traits<Scalar>::size>1 }; };
/** \internal
* \brief Template functor to compute the square root of a scalar
* \sa class CwiseUnaryOp, Cwise::sqrt()
*/
template<typename Scalar> struct ei_scalar_sqrt_op {
EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_sqrt_op)
inline const Scalar operator() (const Scalar& a) const { return ei_sqrt(a); }
typedef typename ei_packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return ei_psqrt(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_sqrt_op<Scalar> >
{ enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = ei_packet_traits<Scalar>::HasSqrt
};
};
/** \internal
* \brief Template functor to compute the cosine of a scalar
* \sa class CwiseUnaryOp, Cwise::cos()
*/
template<typename Scalar> struct ei_scalar_cos_op {
EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_cos_op)
inline Scalar operator() (const Scalar& a) const { return ei_cos(a); }
typedef typename ei_packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return ei_pcos(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_cos_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = ei_packet_traits<Scalar>::HasCos
};
};
/** \internal
* \brief Template functor to compute the sine of a scalar
* \sa class CwiseUnaryOp, Cwise::sin()
*/
template<typename Scalar> struct ei_scalar_sin_op {
EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_sin_op)
inline const Scalar operator() (const Scalar& a) const { return ei_sin(a); }
typedef typename ei_packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return ei_psin(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_sin_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = ei_packet_traits<Scalar>::HasSin
};
};
/** \internal
* \brief Template functor to raise a scalar to a power
* \sa class CwiseUnaryOp, Cwise::pow
*/
template<typename Scalar>
struct ei_scalar_pow_op {
// FIXME default copy constructors seems bugged with std::complex<>
inline ei_scalar_pow_op(const ei_scalar_pow_op& other) : m_exponent(other.m_exponent) { }
inline ei_scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
inline Scalar operator() (const Scalar& a) const { return ei_pow(a, m_exponent); }
const Scalar m_exponent;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_pow_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
/** \internal
* \brief Template functor to compute the inverse of a scalar
* \sa class CwiseUnaryOp, Cwise::inverse()
*/
template<typename Scalar>
struct ei_scalar_inverse_op {
EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_inverse_op)
inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
template<typename PacketScalar>
inline const PacketScalar packetOp(const PacketScalar& a) const
{ return ei_pdiv(ei_pset1(Scalar(1)),a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_inverse_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = int(ei_packet_traits<Scalar>::size)>1 }; };
/** \internal
* \brief Template functor to compute the square of a scalar
* \sa class CwiseUnaryOp, Cwise::square()
*/
template<typename Scalar>
struct ei_scalar_square_op {
EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_square_op)
inline Scalar operator() (const Scalar& a) const { return a*a; }
template<typename PacketScalar>
inline const PacketScalar packetOp(const PacketScalar& a) const
{ return ei_pmul(a,a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_square_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = int(ei_packet_traits<Scalar>::size)>1 }; };
/** \internal
* \brief Template functor to compute the cube of a scalar
* \sa class CwiseUnaryOp, Cwise::cube()
*/
template<typename Scalar>
struct ei_scalar_cube_op {
EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_cube_op)
inline Scalar operator() (const Scalar& a) const { return a*a*a; }
template<typename PacketScalar>
inline const PacketScalar packetOp(const PacketScalar& a) const
{ return ei_pmul(a,ei_pmul(a,a)); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_cube_op<Scalar> >
{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = int(ei_packet_traits<Scalar>::size)>1 }; };
// default ei_functor_traits for STL functors:
template<typename T>
struct ei_functor_traits<std::multiplies<T> >
{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::divides<T> >
{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::plus<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::minus<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::negate<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::logical_or<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::logical_and<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::logical_not<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::greater<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::less<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::greater_equal<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::less_equal<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::equal_to<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::not_equal_to<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::binder2nd<T> >
{ enum { Cost = ei_functor_traits<T>::Cost, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::binder1st<T> >
{ enum { Cost = ei_functor_traits<T>::Cost, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::unary_negate<T> >
{ enum { Cost = 1 + ei_functor_traits<T>::Cost, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::binary_negate<T> >
{ enum { Cost = 1 + ei_functor_traits<T>::Cost, PacketAccess = false }; };
#ifdef EIGEN_STDEXT_SUPPORT
template<typename T0,typename T1>
struct ei_functor_traits<std::project1st<T0,T1> >
{ enum { Cost = 0, PacketAccess = false }; };
template<typename T0,typename T1>
struct ei_functor_traits<std::project2nd<T0,T1> >
{ enum { Cost = 0, PacketAccess = false }; };
template<typename T0,typename T1>
struct ei_functor_traits<std::select2nd<std::pair<T0,T1> > >
{ enum { Cost = 0, PacketAccess = false }; };
template<typename T0,typename T1>
struct ei_functor_traits<std::select1st<std::pair<T0,T1> > >
{ enum { Cost = 0, PacketAccess = false }; };
template<typename T0,typename T1>
struct ei_functor_traits<std::unary_compose<T0,T1> >
{ enum { Cost = ei_functor_traits<T0>::Cost + ei_functor_traits<T1>::Cost, PacketAccess = false }; };
template<typename T0,typename T1,typename T2>
struct ei_functor_traits<std::binary_compose<T0,T1,T2> >
{ enum { Cost = ei_functor_traits<T0>::Cost + ei_functor_traits<T1>::Cost + ei_functor_traits<T2>::Cost, PacketAccess = false }; };
#endif // EIGEN_STDEXT_SUPPORT
#endif // EIGEN_ARRAY_FUNCTORS_H

View File

@ -1,78 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ARRAY_NORMS_H
#define EIGEN_ARRAY_NORMS_H
template<typename Derived, int p>
struct ei_lpNorm_selector
{
typedef typename NumTraits<typename ei_traits<Derived>::Scalar>::Real RealScalar;
inline static RealScalar run(const MatrixBase<Derived>& m)
{
return ei_pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
}
};
template<typename Derived>
struct ei_lpNorm_selector<Derived, 1>
{
inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.cwiseAbs().sum();
}
};
template<typename Derived>
struct ei_lpNorm_selector<Derived, 2>
{
inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.norm();
}
};
template<typename Derived>
struct ei_lpNorm_selector<Derived, Infinity>
{
inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.cwiseAbs().maxCoeff();
}
};
/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
* of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^p\infty \f$
* norm, that is the maximum of the absolute values of the coefficients of *this.
*
* \sa norm()
*/
template<typename Derived>
template<int p>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::lpNorm() const
{
return ei_lpNorm_selector<Derived, p>::run(*this);
}
#endif // EIGEN_ARRAY_NORMS_H

View File

@ -3,7 +3,6 @@ ADD_SUBDIRECTORY(LU)
ADD_SUBDIRECTORY(QR)
ADD_SUBDIRECTORY(SVD)
ADD_SUBDIRECTORY(Cholesky)
ADD_SUBDIRECTORY(Array)
ADD_SUBDIRECTORY(Geometry)
ADD_SUBDIRECTORY(Sparse)
ADD_SUBDIRECTORY(Jacobi)

View File

@ -80,6 +80,8 @@ MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
return ei_dot_nocheck<Derived,OtherDerived>::run(*this, other);
}
//---------- implementation of L2 norm and related functions ----------
/** \returns the squared \em l2 norm of *this, i.e., for vectors, the dot product of *this with itself.
*
* \sa dot(), norm()
@ -128,6 +130,61 @@ inline void MatrixBase<Derived>::normalize()
*this /= norm();
}
//---------- implementation of other norms ----------
template<typename Derived, int p>
struct ei_lpNorm_selector
{
typedef typename NumTraits<typename ei_traits<Derived>::Scalar>::Real RealScalar;
inline static RealScalar run(const MatrixBase<Derived>& m)
{
return ei_pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
}
};
template<typename Derived>
struct ei_lpNorm_selector<Derived, 1>
{
inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.cwiseAbs().sum();
}
};
template<typename Derived>
struct ei_lpNorm_selector<Derived, 2>
{
inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.norm();
}
};
template<typename Derived>
struct ei_lpNorm_selector<Derived, Infinity>
{
inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.cwiseAbs().maxCoeff();
}
};
/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
* of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^p\infty \f$
* norm, that is the maximum of the absolute values of the coefficients of *this.
*
* \sa norm()
*/
template<typename Derived>
template<int p>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
MatrixBase<Derived>::lpNorm() const
{
return ei_lpNorm_selector<Derived, p>::run(*this);
}
//---------- implementation of isOrthogonal / isUnitary ----------
/** \returns true if *this is approximately orthogonal to \a other,
* within the precision given by \a prec.
*
@ -169,4 +226,5 @@ bool MatrixBase<Derived>::isUnitary(RealScalar prec) const
}
return true;
}
#endif // EIGEN_DOT_H

View File

@ -558,12 +558,6 @@ template <typename Scalar, bool RandomAccess> struct ei_linspaced_op
const ei_linspaced_op_impl<Scalar,RandomAccess> impl;
};
// allow to add new functors and specializations of ei_functor_traits from outside Eigen.
// this macro is really needed because ei_functor_traits must be specialized after it is declared but before it is used...
#ifdef EIGEN_FUNCTORS_PLUGIN
#include EIGEN_FUNCTORS_PLUGIN
#endif
// all functors allow linear access, except ei_scalar_identity_op. So we fix here a quick meta
// to indicate whether a functor allows linear access, just always answering 'yes' except for
// ei_scalar_identity_op.
@ -575,4 +569,253 @@ template<typename Scalar> struct ei_functor_has_linear_access<ei_scalar_identity
template<typename Functor> struct ei_functor_allows_mixing_real_and_complex { enum { ret = 0 }; };
template<typename Scalar> struct ei_functor_allows_mixing_real_and_complex<ei_scalar_product_op<Scalar> > { enum { ret = 1 }; };
/** \internal
* \brief Template functor to add a scalar to a fixed other one
* \sa class CwiseUnaryOp, Array::operator+
*/
/* If you wonder why doing the ei_pset1() in packetOp() is an optimization check ei_scalar_multiple_op */
template<typename Scalar>
struct ei_scalar_add_op {
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
// FIXME default copy constructors seems bugged with std::complex<>
inline ei_scalar_add_op(const ei_scalar_add_op& other) : m_other(other.m_other) { }
inline ei_scalar_add_op(const Scalar& other) : m_other(other) { }
inline Scalar operator() (const Scalar& a) const { return a + m_other; }
inline const PacketScalar packetOp(const PacketScalar& a) const
{ return ei_padd(a, ei_pset1(m_other)); }
const Scalar m_other;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_add_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = ei_packet_traits<Scalar>::size>1 }; };
/** \internal
* \brief Template functor to compute the square root of a scalar
* \sa class CwiseUnaryOp, Cwise::sqrt()
*/
template<typename Scalar> struct ei_scalar_sqrt_op {
EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_sqrt_op)
inline const Scalar operator() (const Scalar& a) const { return ei_sqrt(a); }
typedef typename ei_packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return ei_psqrt(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_sqrt_op<Scalar> >
{ enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = ei_packet_traits<Scalar>::HasSqrt
};
};
/** \internal
* \brief Template functor to compute the cosine of a scalar
* \sa class CwiseUnaryOp, Cwise::cos()
*/
template<typename Scalar> struct ei_scalar_cos_op {
EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_cos_op)
inline Scalar operator() (const Scalar& a) const { return ei_cos(a); }
typedef typename ei_packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return ei_pcos(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_cos_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = ei_packet_traits<Scalar>::HasCos
};
};
/** \internal
* \brief Template functor to compute the sine of a scalar
* \sa class CwiseUnaryOp, Cwise::sin()
*/
template<typename Scalar> struct ei_scalar_sin_op {
EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_sin_op)
inline const Scalar operator() (const Scalar& a) const { return ei_sin(a); }
typedef typename ei_packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return ei_psin(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_sin_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = ei_packet_traits<Scalar>::HasSin
};
};
/** \internal
* \brief Template functor to raise a scalar to a power
* \sa class CwiseUnaryOp, Cwise::pow
*/
template<typename Scalar>
struct ei_scalar_pow_op {
// FIXME default copy constructors seems bugged with std::complex<>
inline ei_scalar_pow_op(const ei_scalar_pow_op& other) : m_exponent(other.m_exponent) { }
inline ei_scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
inline Scalar operator() (const Scalar& a) const { return ei_pow(a, m_exponent); }
const Scalar m_exponent;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_pow_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
/** \internal
* \brief Template functor to compute the inverse of a scalar
* \sa class CwiseUnaryOp, Cwise::inverse()
*/
template<typename Scalar>
struct ei_scalar_inverse_op {
EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_inverse_op)
inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
template<typename PacketScalar>
inline const PacketScalar packetOp(const PacketScalar& a) const
{ return ei_pdiv(ei_pset1(Scalar(1)),a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_inverse_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = int(ei_packet_traits<Scalar>::size)>1 }; };
/** \internal
* \brief Template functor to compute the square of a scalar
* \sa class CwiseUnaryOp, Cwise::square()
*/
template<typename Scalar>
struct ei_scalar_square_op {
EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_square_op)
inline Scalar operator() (const Scalar& a) const { return a*a; }
template<typename PacketScalar>
inline const PacketScalar packetOp(const PacketScalar& a) const
{ return ei_pmul(a,a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_square_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = int(ei_packet_traits<Scalar>::size)>1 }; };
/** \internal
* \brief Template functor to compute the cube of a scalar
* \sa class CwiseUnaryOp, Cwise::cube()
*/
template<typename Scalar>
struct ei_scalar_cube_op {
EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_cube_op)
inline Scalar operator() (const Scalar& a) const { return a*a*a; }
template<typename PacketScalar>
inline const PacketScalar packetOp(const PacketScalar& a) const
{ return ei_pmul(a,ei_pmul(a,a)); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_cube_op<Scalar> >
{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = int(ei_packet_traits<Scalar>::size)>1 }; };
// default functor traits for STL functors:
template<typename T>
struct ei_functor_traits<std::multiplies<T> >
{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::divides<T> >
{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::plus<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::minus<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::negate<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::logical_or<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::logical_and<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::logical_not<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::greater<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::less<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::greater_equal<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::less_equal<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::equal_to<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::not_equal_to<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::binder2nd<T> >
{ enum { Cost = ei_functor_traits<T>::Cost, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::binder1st<T> >
{ enum { Cost = ei_functor_traits<T>::Cost, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::unary_negate<T> >
{ enum { Cost = 1 + ei_functor_traits<T>::Cost, PacketAccess = false }; };
template<typename T>
struct ei_functor_traits<std::binary_negate<T> >
{ enum { Cost = 1 + ei_functor_traits<T>::Cost, PacketAccess = false }; };
#ifdef EIGEN_STDEXT_SUPPORT
template<typename T0,typename T1>
struct ei_functor_traits<std::project1st<T0,T1> >
{ enum { Cost = 0, PacketAccess = false }; };
template<typename T0,typename T1>
struct ei_functor_traits<std::project2nd<T0,T1> >
{ enum { Cost = 0, PacketAccess = false }; };
template<typename T0,typename T1>
struct ei_functor_traits<std::select2nd<std::pair<T0,T1> > >
{ enum { Cost = 0, PacketAccess = false }; };
template<typename T0,typename T1>
struct ei_functor_traits<std::select1st<std::pair<T0,T1> > >
{ enum { Cost = 0, PacketAccess = false }; };
template<typename T0,typename T1>
struct ei_functor_traits<std::unary_compose<T0,T1> >
{ enum { Cost = ei_functor_traits<T0>::Cost + ei_functor_traits<T1>::Cost, PacketAccess = false }; };
template<typename T0,typename T1,typename T2>
struct ei_functor_traits<std::binary_compose<T0,T1,T2> >
{ enum { Cost = ei_functor_traits<T0>::Cost + ei_functor_traits<T1>::Cost + ei_functor_traits<T2>::Cost, PacketAccess = false }; };
#endif // EIGEN_STDEXT_SUPPORT
// allow to add new functors and specializations of ei_functor_traits from outside Eigen.
// this macro is really needed because ei_functor_traits must be specialized after it is declared but before it is used...
#ifdef EIGEN_FUNCTORS_PLUGIN
#include EIGEN_FUNCTORS_PLUGIN
#endif
#endif // EIGEN_FUNCTORS_H