mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-16 14:49:39 +08:00
patch from Moritz Lenz to allow solving transposed problem with superlu
This commit is contained in:
parent
fb3078fb62
commit
804a239d30
@ -25,6 +25,12 @@
|
||||
#ifndef EIGEN_SPARSELU_H
|
||||
#define EIGEN_SPARSELU_H
|
||||
|
||||
enum {
|
||||
SvNoTrans = 0,
|
||||
SvTranspose = 1,
|
||||
SvAdjoint = 2
|
||||
};
|
||||
|
||||
/** \ingroup Sparse_Module
|
||||
*
|
||||
* \class SparseLU
|
||||
@ -115,7 +121,8 @@ class SparseLU
|
||||
//inline const MatrixType& matrixU() const { return m_matrixU; }
|
||||
|
||||
template<typename BDerived, typename XDerived>
|
||||
bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x) const;
|
||||
bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x,
|
||||
const int transposed = SvNoTrans) const;
|
||||
|
||||
/** \returns true if the factorization succeeded */
|
||||
inline bool succeeded(void) const { return m_succeeded; }
|
||||
@ -136,10 +143,17 @@ void SparseLU<MatrixType,Backend>::compute(const MatrixType& a)
|
||||
ei_assert(false && "not implemented yet");
|
||||
}
|
||||
|
||||
/** Computes *x = U^-1 L^-1 b */
|
||||
/** Computes *x = U^-1 L^-1 b
|
||||
*
|
||||
* If \a transpose is set to SvTranspose or SvAdjoint, the solution
|
||||
* of the transposed/adjoint system is computed instead.
|
||||
*
|
||||
* Not all backends implement the solution of the transposed or
|
||||
* adjoint system.
|
||||
*/
|
||||
template<typename MatrixType, int Backend>
|
||||
template<typename BDerived, typename XDerived>
|
||||
bool SparseLU<MatrixType,Backend>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x) const
|
||||
bool SparseLU<MatrixType,Backend>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x, const int transposed) const
|
||||
{
|
||||
ei_assert(false && "not implemented yet");
|
||||
return false;
|
||||
|
@ -318,7 +318,7 @@ class SparseLU<MatrixType,SuperLU> : public SparseLU<MatrixType>
|
||||
Scalar determinant() const;
|
||||
|
||||
template<typename BDerived, typename XDerived>
|
||||
bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x) const;
|
||||
bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x, const int transposed = SvNoTrans) const;
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
@ -413,12 +413,22 @@ void SparseLU<MatrixType,SuperLU>::compute(const MatrixType& a)
|
||||
|
||||
template<typename MatrixType>
|
||||
template<typename BDerived,typename XDerived>
|
||||
bool SparseLU<MatrixType,SuperLU>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> *x) const
|
||||
bool SparseLU<MatrixType,SuperLU>::solve(const MatrixBase<BDerived> &b,
|
||||
MatrixBase<XDerived> *x, const int transposed) const
|
||||
{
|
||||
const int size = m_matrix.rows();
|
||||
const int rhsCols = b.cols();
|
||||
ei_assert(size==b.rows());
|
||||
|
||||
switch (transposed) {
|
||||
case SvNoTrans : m_sluOptions.Trans = NOTRANS; break;
|
||||
case SvTranspose : m_sluOptions.Trans = TRANS; break;
|
||||
case SvAdjoint : m_sluOptions.Trans = CONJ; break;
|
||||
default:
|
||||
std::cerr << "Eigen: tranpsiotion option \"" << transposed << "\" not supported by the SuperLU backend\n";
|
||||
m_sluOptions.Trans = NOTRANS;
|
||||
}
|
||||
|
||||
m_sluOptions.Fact = FACTORED;
|
||||
m_sluOptions.IterRefine = NOREFINE;
|
||||
|
||||
@ -443,6 +453,8 @@ bool SparseLU<MatrixType,SuperLU>::solve(const MatrixBase<BDerived> &b, MatrixBa
|
||||
&m_sluStat, &info, Scalar());
|
||||
StatFree(&m_sluStat);
|
||||
|
||||
// reset to previous state
|
||||
m_sluOptions.Trans = NOTRANS;
|
||||
return info==0;
|
||||
}
|
||||
|
||||
|
@ -191,6 +191,14 @@ template<typename Scalar> void sparse_solvers(int rows, int cols)
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU");
|
||||
}
|
||||
// std::cerr << refDet << " == " << slu.determinant() << "\n";
|
||||
if (slu.solve(b, &x, SvTranspose)) {
|
||||
VERIFY(b.isApprox(m2.transpose() * x, test_precision<Scalar>()));
|
||||
}
|
||||
|
||||
if (slu.solve(b, &x, SvAdjoint)) {
|
||||
// VERIFY(b.isApprox(m2.adjoint() * x, test_precision<Scalar>()));
|
||||
}
|
||||
|
||||
if (count==0) {
|
||||
VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user